921 resultados para TRANSFORMER AT DEEP SATURATION
Resumo:
The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.
Resumo:
Hall effect, photoluminescence (PL), infrared absorption, deep level transient spectroscopy (DLTS), and Raman scattering have been used to study property and defects of ZnO single crystal grown by a chemical vapor transport method (CVT). As-grown ZnO is N type with free electron density Of 10(16)-10(17)cm(-3). It has a slight increase after 900 degrees C annealing in oxygen ambient. The DLTS measurement revealed four deep level defects with energy at 0.30eV, 0.50eV, 0.68eV and 0.90eV in the as-grown ZnO sample, respectively. After the high temperature annealing, only the 0.5eV defect survive and has a concentration increase. PL results of the as-grown and annealed ZnO indicate that the well-known green emission disappear after the annealing. The result suggests a correlation between the 0.68eV defect and the green PL peak. Results of P-doped ZnO were also compared with the undoped ZnO sample. The nature of the defects and their influence on the material property have been discussed.
Resumo:
The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143025]
Resumo:
An apparent defect suppression effect has been observed in InP through an investigation of deep level defects in different semi-insulating (SI) InP materials. Quality improvement of SI-InP based on the defect suppression mechanism is presented.
Resumo:
Undoped high resistivity (HR) GaN epilayers were grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Thermally stimulated current (TSC) and resistivity measurements have been carried out to investigate deep level traps. Deep levels with activation energies of 1.06eV and 0.85eV were measured in sample 1. Gaussian fitting of TSC spectra showed five deep levels in different samples. (c) 2006 WILEY VCH Vertag GmbH & Co. KGaA, Weinheim
Resumo:
Ge-on-silicon-on-insulator p-i-n photodetectors were fabricated using an ultralow-temperature Ge buffer by ultrahigh-vacuum chemical vapor deposition. For a detector of 70-mu m diameter, the 1-dB small-signal compression power was about 110.5 mW. The 3-dB bandwidth at 3-V reverse bias was 13.4 GHz.
Resumo:
Using deep level transient spectroscopy (DLTS) the conduction-subband energy levels in a V-shaped potential well induced by Si-delta doping in GaAs were determined. Self-consistent calculation gives four subbands in the well below the Fermi level. Experimentally, two DLTS peaks due to electron emission from these subbands were observed. Another two subbands with low electron concentration are believed to be merged into the adjacent DLTS peak. A good agreement between self-consistent calculation and experiment was obtained. (C) 1994 American Institute of Physics.