687 resultados para TELESCOPE
Resumo:
We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] lambda lambda 6300, 6364 lines constrains the progenitors of these three SNe to the M-ZAMS = 12-16 M-circle dot range (ejected oxygen masses 0.3-0.9 M-circle dot), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from M-ZAMS greater than or similar to 17 M-circle dot progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M-circle dot is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] lambda lambda 6548, 6583 emission lines that dominate over Ha emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable H alpha emission or absorption after similar to 150 days, and nebular phase emission seen around 6550 angstrom is in many cases likely caused by [N II] lambda lambda 6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually disappear as the optical depths decrease with time. The modelled evolution of this effect matches the observed evolution in SN 2011dh.
Resumo:
We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of about 240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors asteroids rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical+systematic uncertainties and errors on each parameter. The method was confirmed by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (2012) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (2010) and Bowell et al. (1989) phase functions. Our results confirm the bias in MPC photometry discovered by ( Jurić et al., 2002).
Resumo:
The detection of exoplanets is currently of great topical interest in astronomy. The Rapid Imager for Surveys of Exoplanets 2 (RISE2) camera will be built for exoplanet studies and in particular for detection of transit timing variations (TTV) induced by the presence of a third body in the system. It will be identical to RISE which has been running successfully on the 2m Liverpool Telescope since 2008 but modified for the 2.3m ARISTARCHOS telescope. For TTV work the RISE/LT combination is regularly producing timings with accuracy <10 seconds making it the best suited instrument for this work. Furthermore, RISE2/AT has the added benefit of being located at a significantly different longitude to the LT/RISE on La Palma, hence extending the transit coverage.
Resumo:
Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month.
Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1).
Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5<sup>m</sup> for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHK<inf>s</inf> filters.
Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ∼15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK<inf>s</inf> imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this.
Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
Resumo:
We present grizP1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w = -1.120+0.360-0.206(Stat)+0.2690.291(Sys). When combined with BAO+CMB(Planck)+H0, the analysis yields ΩM = 0.280+0.0130.012 and w = -1.166+0.072-0.069 including all identified systematics. The value of w is inconsistent with the cosmological constant value of -1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H0 constraint, though it is strongest when including the H0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w = -1.124+0.083-0.065, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ∼three times as many SNe should provide more conclusive results.
Resumo:
We present early photometric and spectroscopic observations of SN 2013ej, a bright Type IIP supernova (SN) in M74. SN 2013ej is one of the closest SNe ever discovered. The available archive images and the early discovery help to constrain the nature of its progenitor. The earliest detection of this explosion was on 2013 July 24.125 UT and our spectroscopic monitoring with the FLOYDS spectrographs began on July 27.7 UT, continuing almost daily for two weeks. Daily optical photometric monitoringwas achieved with the 1mtelescopes of the Las Cumbres Observatory Global Telescope (LCOGT) network, and was complemented by UV data from Swift and near-infrared spectra from Public ESO Spectroscopic Survey of Transient Objects and Infrared Telescope Facility. The data from our monitoring campaign show that SN 2013ej experienced a 10 d rise before entering into a well-defined plateau phase. This unusually long rise time for a Type IIP has been seen previously in SN 2006bp and SN 2009bw. A relatively rare strong absorption blueward of Hα is present since our earliest spectrum. We identify this feature as Si II, rather than high-velocity Hα as sometimes reported in the literature.
Resumo:
We report the results of our search for the progenitor candidate of SN 2013dk, a Type Ic supernova (SN) that exploded in the Antennae galaxy system. We compare pre-explosion Hubble Space Telescope (HST) archival images with SN images obtained using adaptive optics at the ESO Very Large Telescope. We isolate the SN position to within 3σ uncertainty radius of 0.02 arcsec and show that there is no detectable point source in any of the HST filter images within the error circle. We set an upper limit to the absolute magnitude of the progenitor to be MF555W ≳ -5.7, which does not allow Wolf-Rayet (WR) star progenitors to be ruled out. A bright source appears 0.17 arcsec away, which is either a single bright supergiant or compact cluster, given its absolute magnitude of MF555W = -9.02 ± 0.28 extended wings and complex environment. However, even if this is a cluster, the spatial displacement of SN 2013dk means that its membership is not assured. The strongest statement that we can make is that in the immediate environment of SN 2013dk (within 10 pc or so), we find no clear evidence of either a point source coincident with the SN or a young stellar cluster that could host a massive WR progenitor.
The death of massive stars - II. Observational constraints on the progenitors of Type Ibc supernovae
Resumo:
The progenitors of many Type II core-collapse supernovae (SNe) have now been identified directly on pre-discovery imaging. Here, we present an extensive search for the progenitors of Type Ibc SNe in all available pre-discovery imaging since 1998. There are 12 Type Ibc SNe with no detections of progenitors in either deep ground-based or Hubble Space Telescope archival imaging. The deepest absolute BVR magnitude limits are between -4 and - 5 mag. We compare these limits with the observed Wolf-Rayet population in the Large Magellanic Cloud and estimate a 16 per cent probability that we have failed to detect such a progenitor by chance. Alternatively, the progenitors evolve significantly before core-collapse or we have underestimated the extinction towards the progenitors. Reviewing the relative rates and ejecta mass estimates from light-curve modelling of Ibc SNe, we find both incompatible with Wolf-Rayet stars with initial masses >25 M⊙ being the only progenitors. We present binary evolution models that fit these observational constraints. Stars in binaries with initial masses ≲ 20 M⊙ lose their hydrogen envelopes in binary interactions to become low-mass helium stars. They retain a low-mass hydrogen envelope until ≈104 yr before core-collapse; hence, it is not surprising that Galactic analogues have been difficult to identify.
Resumo:
We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M bol ~= -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (MB ≈ -18 mag, diameter
Resumo:
We present optical and near-infrared (NIR) photometry and NIR spectroscopy of SN 2004am, the only optically detected supernova (SN) in M82. These demonstrate that SN 2004am was a highly reddened Type II-P SN similar to the low-luminosity Type II-P events such as SNe 1997D and 2005cs. We show that SN 2004am was located coincident with the obscured super star cluster M82-L, and from the cluster age infer a progenitor mass of 12{^{+ 7}_{- 3}} M⊙. In addition to this, we present a high spatial resolution Gemini-North Telescope K-band adaptive optics image of the site of SN 2008iz and a second transient of uncertain nature, both detected so far only at radio wavelengths. Using image subtraction techniques together with archival data from the Hubble Space Telescope, we are able to recover a NIR transient source coincident with both objects. We find the likely extinction towards SN 2008iz to be not more than AV ˜ 10. The nature of the second transient remains elusive and we regard an extremely bright microquasar in M82 as the most plausible scenario.
Resumo:
We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (
Resumo:
The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.
Resumo:
With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in term limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3.La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV-Visible irradiation, which produced a rate of 89 µmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.
Resumo:
Aims. 2P/Encke is a short period comet that was discovered in 1786 and has been extensively observed and studied for more than 200years. The Taurid meteoroid stream has long been linked with 2P/Encke owing to a good match of their orbital elements, even thoughthe comet’s activity is not strong enough to explain the number of observed meteors. Various small near-Earth objects (NEOs) havebeen discovered with orbits that can be linked to 2P/Encke and the Taurid meteoroid stream. Maribo and Sutter’s Mill are CM typecarbonaceous chondrite that fell in Denmark on January 17, 2009 and April 22, 2012, respectively. Their pre-atmospheric orbits placethem in the middle of the Taurid meteoroid stream, which raises the intriguing possibility that comet 2P/Encke could be the parentbody of CM chondrites.
Methods. To investigate whether a relationship between comet 2P/Encke, the Taurid complex associated NEOs, and CM chondritesexists, we performed photometric and spectroscopic studies of these objects in the visible wavelength range. We observed 2P/Enckeand 10 NEOs on August 2, 2011 with the FORS instrument at the 8.2 m Very Large Telescope on Cerro Paranal (Chile).
Results. Images in the R filter, used to investigate the possible presence of cometary activity around the nucleus of 2P/Encke andthe NEOs, show that no resolved coma is present. None of the FORS spectra show the 700 nm absorption feature due to hydratedminerals that is seen in the CM chondrite meteorites. All objects show featureless spectra with moderate reddening slopes at λ < 800nm. Apart for 2003 QC10 and 1999 VT25, which show a flatter spectrum, the spectral slope of the observed NEOs is compatible withthat of 2P/Encke. However, most of the NEOs show evidence of a silicate absorption in lower S/N data at λ > 800 nm, which is notseen in 2P/Encke, which suggests that they are not related.
Conclusions. Despite similar orbits, we find no spectroscopic evidence for a link between 2P/Encke, the Taurid complex NEOs andthe Maribo and Sutter’s Mill meteorites. However, we cannot rule out a connection to the meteorites either, as the spectral differencesmay be caused by secondary alteration of the surfaces of the NEOs.
Resumo:
On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~1013 cm) would be highly inconsistent with constraints from our post-explosion spectra.