980 resultados para T-Lymphocytes -- microbiology
Resumo:
BACKGROUND International travel contributes to the worldwide spread of multidrug resistant Gram-negative bacteria. Rates of travel-related faecal colonization with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae vary for different destinations. Especially travellers returning from the Indian subcontinent show high colonization rates. So far, nothing is known about region-specific risk factors for becoming colonized. METHODS An observational prospective multicentre cohort study investigated travellers to South Asia. Before and after travelling, rectal swabs were screened for third-generation cephalosporin- and carbapenem-resistant Enterobacteriaceae. Participants completed questionnaires to identify risk factors for becoming colonized. Covariates were assessed univariately, followed by a multivariate regression. RESULTS Hundred and seventy persons were enrolled, the largest data set on travellers to the Indian subcontinent so far. The acquired colonization rate with ESBL-producing Escherichia coli overall was 69.4% (95% CI 62.1-75.9%), being highest in travellers returning from India (86.8%; 95% CI 78.5-95.0%) and lowest in travellers returning from Sri Lanka (34.7%; 95% CI 22.9-48.7%). Associated risk factors were travel destination, length of stay, visiting friends and relatives, and eating ice cream and pastry. CONCLUSIONS High colonization rates with ESBL-producing Enterobacteriaceae were found in travellers returning from South Asia. Though risk factors were identified, a more common source, i.e. environmental, appears to better explain the high colonization rates.
Resumo:
BACKGROUND Staphylococcus aureus has long been recognized as a major pathogen. Methicillin-resistant strains of S. aureus (MRSA) and methicillin-resistant strains of S. epidermidis (MRSE) are among the most prevalent multiresistant pathogens worldwide, frequently causing nosocomial and community-acquired infections. METHODS In the present pilot study, we tested a polymerase chain reaction (PCR) method to quickly differentiate Staphylococci and identify the mecA gene in a clinical setting. RESULTS Compared to the conventional microbiology testing the real-time PCR assay had a higher detection rate for both S. aureus and coagulase-negative Staphylococci (CoNS; 55 vs. 32 for S. aureus and 63 vs. 24 for CoNS). Hands-on time preparing DNA, carrying out the PCR, and evaluating results was less than 5 h. CONCLUSIONS The assay is largely automated, easy to adapt, and has been shown to be rapid and reliable. Fast detection and differentiation of S. aureus, CoNS, and the mecA gene by means of this real-time PCR protocol may help expedite therapeutic decision-making and enable earlier adequate antibiotic treatment.
Resumo:
Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker.
Resumo:
Background: Tumor infiltrating T-lymphocytes (TILs) have been shown to play an important prognostic role in many carcinomas. The identification of prognostic relevant morphological or molecular factors is a major area of interest in the diagnostic process and for the treatment of highly aggressive esophageal adenocarcinoma. Studies about the impact of TILs in this tumor have not shown completely congruent results yet. We present a comprehensive study about the clinical and pathological impact of TIL in esophageal adenocarcinomas. Methods: A next generation tissue microarray (TMA) of 117 primary resected esophageal adenocarcinomas was analyzed for CD3+, CD8+ and FoxP3+ TIL using immunohistochemistry. The TMA contained three cores of the tumor center and the tumor periphery per each case. Slides were scanned with a high-resolution scanner (ScanScope CS; Aperio) and an image analysis software (Aperio Image Scope) was used to determine the TIL counts. The results were correlated with clinicopathological parameters. Results: CD3+, CD8+ and FoxP3+ TIL counts showed a significant correlation among each other (p<0.001 each, range: 0.27-0.77). TIL counts were categorized as high and low levels, according to the median. Tumors with high FoxP3+ intratumoral lymphocyte counts were more frequently of lower pT category (p<0.001) and without lymph node metastasis (p=0.04). High levels of FoxP3+ lymphocytes in the tumor center and the periphery were also associated with better prognosis (p<0.001 and p=0.041, respectively) in univariate analysis. A similar prognostic impact was seen for high levels of CD3+ and CD8+ TIL in the tumor center, but not in the periphery (p=0.047 and p=0.011, respectively). In multivariate analysis high central FoxP3+TIL levels were an independent prognostic factor (HR=0.4; p=0.023) which was similar to a combination score of CD3+/CD8+/FoxP3+ TIL (HR=0.54; p=0.027) or CD8+/Foxp3+ TIL (HR=0.052; p=0.020) and superior to pT- and pN category (p>0.05 each). Conclusion: This study demonstrates a significant beneficial prognostic impact of high TIL counts in the tumor center of esophageal adenocarcinomas, in particular with regards to the subpopulation of FoxP3+ and CD8+ T-regulatory cells. The determination of intratumoral lymphocytic counts and application of TIL scores can improve prognostic accuracy of pathologic reports of these tumors and may be helpful for better risk stratification of esophageal adenocarcinoma patients.
Resumo:
Theileria parva-infected lymphoblastoid cell lines of T or B cell origin were examined for IL-2 mRNA expression. T. parva-infected T cell lines could be of the CD4-CD8-, CD4+CD8-, CD4-CD8+, or CD4+CD8+ phenotype and express alpha beta or gamma delta TCR. By Northern blot analysis and amplification by the polymerase chain reaction, IL-2 mRNA could be detected in all T. parva-infected cell lines tested. IL-2 mRNA expression was also shown to be dependent on the continuous presence of the parasite in the host cell cytoplasm, because elimination of the parasite by treatment of T. parva-infected cell cultures with the theilericidal drug BW720c resulted in the disappearance of detectable IL-2 mRNA. The effect of anti-IL-2 antibodies on the proliferation of T. parva-infected cells was also tested. Inhibition experiments suggest that although IL-2 mRNA can be detected in all cell lines tested, not all T. parva-infected cell lines are dependent on IL-2 for their proliferation. Our data provide the first example for the constitutive expression of IL-2 mRNA in T and B cells caused by infection with an intracellular parasite.
Resumo:
The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.
Resumo:
Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1 protein into a recombinant vaccine.
Resumo:
Diarrhea is a major cause of morbidity and mortality worldwide. Shigella causes up to 20% of all diarrhea. Gut-level immunity and breast-feeding of infants are important factors in protection against shigellosis. The lumen of the gut is lined with lymphocytes which mediate natural killer cytotoxicity, NKC, and antibody-dependent cellular cytotoxicity, ADCC. NKC and ADCC are extracellular, nonphagocytic leukocyte killing mechanisms, which occur in the absence of complement, without prior antigen stimulation, and without regard to the major histocompatibility complex. In this study, virulent and avirulent shigellae were used as the target cells. Leukocytes from peripheral blood, breast milk, and guinea pig gut-associated tissues were used as effector cells. Adult human peripheral blood mononuclear cells and lymphocytes, but not macrophages or polymorphonuclear leukocytes, mediated NKC and ADCC at an optimal effector to target cell ratio of 100:1 in a 60 minute bactericidal assay. An antiserum dilution of 1:10 was optimal for ADCC. Whole, viable lymphocytes were necessary for cytotoxicity. Lymphocyte NKC, but not ADCC, was greatly enhanced by interferon. Lymphocyte NKC occurred against several virulent strains of S. sonnei and a virulent strain of S. flexneri. ADCC (using immune serum directed against S. sonnei) occurred against virulent S. sonnei, but not against avirulent S. sonnei or virulent S. flexneri. Lymphocyte ADCC was not inhibited by the presence of phenylbutazone or by pretreatment of lymphocytes with anti-HNK serum plus complement. Both adherent and non-adherent breast milk leukocytes mediated NKC and ADCC. Mononuclear cells from young children demonstrated normal ADCC, when compared to ADCC of adult cells. Neonatal cord blood and a CGD patient's peripheral blood mononuclear and ploymorphonuclear cells demonstrated high ADCC compared to adult cells. Intraepithelial lymphocytes, spleen cells, and peritoneal cells from normal guinea pigs demonstrated NKC and ADCC. Animals which had been starved and opiated were made susceptible to infection by Shigella. The susceptible animals demonstrated deficient NKC and ADCC with all three leukocyte populations. High NKC and ADCC activity of gut-associated leukocytes from human breast milk and guinea pig tissues may correlate with resistance to infection. ^
Resumo:
Adhesion involves interactions between cells or cells with extracellular matrix components and is a fundamental process for all multicellular organisms as well as many pathogenic microbes. Integrins are heterodimeric transmembrane proteins that function as adhesion molecules and transduce signals between the extracellular environment and the intracellular cytoskeletal machinery. β1 integrin subfamily is highly expressed on T lymphocytes and mediates cell spreading, adhesion and coactivation. T lymphocytes have an important role in the regulation and homeostasis of the immune system therefore, the goals of this study were to first to investigate β1 integrin interaction with fibronectin binding protein A (FnbpA), a surface protein expressed on gram-negative bacteria Staphylococcus aureus. Second, characterize the association and function of a non-integrin surface protein, CD98, with β1 integrins on T lymphocytes. ^ FnbpA binds to fibronectin (FN), also a ligand for α5β1 and α4β1 integrins on T lymphocytes. Since both bacterial proteins FnbpA and T cell integrins utilize FN, it was of interest to determine the effects FnbpA on T cell activation. Results demonstrated that recombinant FnbpA (rFnbpA) coimmobilized with OKT3 mediated T cell coactivation in a soluble FN-dependent manner. Integrin α5β1 was identified as the main integrin utilized by Staphylococcus aureus FnbpA from studies using soluble antibodies to inhibit T cell proliferation and parallel plate flow chamber assays. The mechanism of rFnbpA-mediated coactivation was one that used soluble FN as a bridge between rFnbpA and integrin α5β1 on the T lymphocyte. ^ Since integrins are utilized by T lymphocytes and bacterial proteins, it was of interest to identify proteins involved in integrin regulation. Anti-CD98 mAb 80A10 was identified and characterized from a screen to identify surface proteins involved in integrin signaling and functions. CD98 is a non-integrin protein that was sensitive to integrin inhibition in human T lymphocyte aggregation and activation, thus suggested that CD98 shared a common signaling pathway with integrins. These results led to the question of whether CD98 physically associates with β1 integrins. Fluorescence microscopy and biochemical analysis determined that CD98 is specifically associated with β1 integrin on human T lymphocytes and may be part of a larger multimolecular signaling complex. ^
Resumo:
B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^
Resumo:
Radiotherapy has been a method of choice in cancer treatment for a number of years. Mathematical modeling is an important tool in studying the survival behavior of any cell as well as its radiosensitivity. One particular cell under investigation is the normal T-cell, the radiosensitivity of which may be indicative to the patient's tolerance to radiation doses.^ The model derived is a compound branching process with a random initial population of T-cells that is assumed to have compound distribution. T-cells in any generation are assumed to double or die at random lengths of time. This population is assumed to undergo a random number of generations within a period of time. The model is then used to obtain an estimate for the survival probability of T-cells for the data under investigation. This estimate is derived iteratively by applying the likelihood principle. Further assessment of the validity of the model is performed by simulating a number of subjects under this model.^ This study shows that there is a great deal of variation in T-cells survival from one individual to another. These variations can be observed under normal conditions as well as under radiotherapy. The findings are in agreement with a recent study and show that genetic diversity plays a role in determining the survival of T-cells. ^
Resumo:
CD8+ cytotoxic T lymphocytes (CTL) frequently infiltrate tumors, yet most melanoma patients fail to undergo tumor regression. We studied the differentiation of the CD8+ tumor-infiltrating lymphocytes (TIL) from 44 metastatic melanoma patients using known T-cell differentiation markers. We also compared CD8+ TIL against the T cells from matched melanoma patients’ peripheral blood. We discovered a novel subset of CD8+ TIL co-expressing early-differentiation markers, CD27, CD28, and a late/senescent CTL differentiation marker, CD57. This CD8+CD57+ TIL expressed a cytolytic enzyme, granzyme B (GB), yet did not express another cytolytic pore-forming molecule, perforin (Perf). In contrast, the CD8+CD57+ T cells in the periphery were CD27-CD28-, and GBHi and PerfHi. We found this TIL subset was not senescent and could be induced to proliferate and differentiate into CD27-CD57+, perforinHi, mature CTL. This further differentiation was arrested by TGF-β1, an immunosuppressive cytokine known to be produced by many different kinds of tumors. Therefore, we have identified a novel subset of incompletely differentiated CD8+ TIL that resembled those found in patients with uncontrolled chronic viral infections. In a related study, we explored prognostic biomarkers in metastatic melanoma patients treated in a Phase II Adoptive Cell Therapy (ACT) trial, in which autologous TIL were expanded ex vivo with IL-2 and infused into lymphodepleted patients. We unexpectedly found a significant positive clinical association with the infused CD8+ TIL expressing B- and T- lymphocyte attentuator (BTLA), an inhibitory T-cell receptor. We found that CD8+BTLA+ TIL had a superior proliferative response to IL-2, and were more capable of autocrine IL-2 production in response to TCR stimulation compared to the CD8+BTLA- TIL. The CD8+BTLA+ TIL were less differentiated and resembled the incompletely differentiated CD8+ TIL described above. In contrast, CD8+BTLA- TIL were poorly proliferative, expressed CD45RA and killer-cell immunoglobulin-like receptors (KIRs), and exhibited a gene expression signature of T cell deletion. Surprisingly, ligation of BTLA by its cognate receptor, HVEM, enhanced the survival of CD8+BTLA+ TIL by activating Akt/PKB. Our studies provide a comprehensive characterization of CD8+ TIL differentiation in melanoma, and revealed BTLA as a novel T-cell differentiation marker along with its role in promoting T cell survival.
Resumo:
The purpose of these studies was to determine the role of suppressor factors (TsF) in the regulation of immune responses by ultraviolet radiation-induced suppressor T lymphocytes (Ts). The Ts were induced following epicutaneous sensitization with contact allergens to an unirradiated site on mice irradiated five days earlier with 40 kJ/m$\sp2$ UVB (280-320 nm) radiation. The spleens of such mice contain afferent, hapten-specific, Thy-1$\sp+$, Lyt-1$\sp+$,2$\sp-$ Ts that suppress in vivo contact hypersensitivity (CHS) and antibody responses and the in vitro generation of cytotoxic T lymphocytes (CTL). Four approaches were used to determine the role of TsF. First, lysates produced from sonically-disrupted Ts were injected i.v. into normal animals; they inhibited CHS in vivo in a nonspecific manner. The lysates suppressed the induction and elicitation of CHS, and they inhibited the in vitro generation of CTL. Lysates prepared from splenocytes obtained from unirradiated mice or UV-irradiated, unsensitized mice failed to inhibit either response. Second, supernatants from cultures containing Ts, normal syngeneic responder lymphocytes, and hapten-modified stimulator cells were injected i.v. into normal recipients. They inhibited the induction of CHS and did so in a hapten-specific manner. Cellular and kinetic requirements were observed for the generation of suppressive activity. Splenocytes from mice treated with Ts supernatants suppressed CHS when transferred into normal animals. The supernatants also suppressed the in vitro generation of specific CTL. Third, the TsF-specific B16G monoclonal antibody was tested for its ability to modulate the effects of UV radiation in vivo. The i.v. injection of B16G into UV-irradiated mice reduced the suppression of CHS. Splenocytes of B16G-treated mice transferred into normal recipients, and they suppressed CHS, indicating that the Ts were not depleted. Fourth, B16G was used to isolate a putative TsF by antibody immunoadsorbance. When the B16G-bound fraction was eluted and injected i.v. into normal animals, it suppressed CHS and represented a 900-fold enrichment of activity over the starting material, based on specific activity. By SDS-PAGE, the B16G-bound material contained nondisulfide-linked 45- and 50-kDa components. These results suggest that TsF may play an immunoregulatory role in CHS. The isolation of a UV radiation-induced TsF lends credence to the involvement of such molecules. ^
Resumo:
Phospholipid fatty acids were measured in samples of 60°-130°C sediment taken from three holes at Site 1036 (Ocean Drilling Program Leg 169) to determine microbial community structure and possible community replacement at high temperatures. Five of six samples had similar concentrations of phospholipid fatty acids (2-6 pmol/g dry weight of sediment), and biomass estimates from these measurements compare favorably with direct microscopic counts, lending support to previous microscopic measures of deep sedimentary biomass. Very long-chain phospholipid fatty acids (21 to 30 carbons) were detected in the sediment and were up to half the total phospholipid fatty acid measured; they appear to increase in abundance with temperature, but their significance is not known. Community composition from lipid analysis showed that samples contained standard eubacterial membrane lipids but no detectable archaeal lipids, though archaea would be expected to dominate the samples at high temperatures. Cluster analysis of Middle Valley phospholipid fatty acid compositions shows that lipids in Middle Valley sediment samples are similar to each other at all temperatures, with the exception of very long-chain fatty acids. The data neither support nor deny a shift to a high-temperature microbial community in hot cores, so at the present time we cannot draw conclusions about whether the microbes observed in these hot sediments are active.
Resumo:
These data are from a field experiment conducted in a shallow alluvial aquifer along the Colorado River in Rifle, Colorado, USA. In this experiment, bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Data include names and location data for boreholes, geochemical data for all the boreholes between June 1, 2010 and January 1, 2011, microarray data provided as signal to noise ratio (SNR) for individual microarray probes, microarray data provided as signal to noise ratio (SNR) by Genus.