941 resultados para Surfaces in the 3-dimensional Sphere


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction between CdCl2.H2O and NaH2PO4.H2O Under hydrothermal conditions gives rise to a new cadmium chlorophosphate of the formula Na-3[Cd4Cl3(HPO4)(2)(H2PO4)(4)] I. This material crystallizes in the orthorhombic system with space group Fmm2(no. 42). I has macroanionic layers of [Cd4Cl3(HPO4)(2)(H2PO4)(4)](3-) with Na+ ions in the interlamellar space. The discovery of such compounds suggests that metathetic reactions carried out under hydrothermal conditions may provide a novel route for the synthesis of new open-framework structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bénard–Marangoni convection is studied in a three-dimensional container with thermally insulated lateral walls and prescribed heat flux at lower boundary. The upper surface of the incompressible, viscous fluid is assumed to be flat with temperature dependent surface tension. A Galerkin–Tau method with odd and even trial functions satisfying all the essential boundary conditions except the natural boundary conditions at the free surface has been used to solve the problem. The critical Marangoni and Rayleigh numbers are determined for the onset of steady convection as a function of aspect ratios x0 and y0 for the cases of Bénard–Marangoni, pure Marangoni and pure Bénard convections. It is observed that critical parameters are decreasing with an increase in aspect ratios. The flow structures corresponding to the values of the critical parameters are presented in all the cases. It is observed that the critical parameters are higher for case with heat flux prescribed than those corresponding to the case with prescribed temperature. The critical Marangoni number for pure Marangoni convection is higher than critical Rayleigh number corresponding to pure Bénard convection for a given aspect ratio whereas the reverse was observed for two-dimensional infinite layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis, structure and magnetic properties of mixed-metal oxides of ABO(3) composition in the La-B-V-O (B = Ni, Cu) systems are described in the present paper. While the B = Ni oxides adopt GdFeO3-like perovskite structure containing disordered nickel and vanadium at the octahedral B site, La3Cu2VO9 crystallizes in a YAlO3-type structure. A detailed investigation of the superstructure of nominal La3Cu2VO9 by WDS analysis and Rietveld refinement of powder XRD data reveal that the likely composition of the phase is La13Cu9V4O38.5, where the Cu and V atoms are ordered in a root13a(h) (a(h) = hexagonal a parameter of YAlO3-like subcell) superstructure. Magnetic susceptibility data support the proposed superstructure consisting of triangular Cu-3 clusters. At low temperatures, the magnetic moment corresponds to S = 1/2 per Cu-3 cluster, while at high temperatures the behavior is Curie-Weiss like, showing S = 1/2 per copper. The present work reveals the contrasting behavior of La-Cu-V-O and La-Ni-V-O systems: while a unique line-phase related to YAlO3 structure is formed around La3Cu2VO9 Composition in the copper system, a continuous series of perovskite-GdFeO3 solid solutions, LaNi1-xVxO3 for 0 less than or equal to x less than or equal to 1/3 seems to be obtained in the nickel system, where the oxidation state of nickel varies from 3+ to 2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice. We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation eta and eta + d eta, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice.We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation η and η + dη, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct evidence for the existence of intra-molecular C-F center dot center dot center dot H-N hydrogen bond in organofluorine molecules, in the liquid state, is derived using NMR spectroscopy by the detection of long range interactions among fluorine, nitrogen and hydrogen atoms. The present study reports the determination of the relative signs and magnitudes of through space and through bond couplings to draw unambiguous evidence on the existence of weak molecular interactions involving organic fluorine. It is a simple, easy to implement, N-15 natural abundant two dimensional heteronuclear N-15-H-1 double quantum-single quantum correlation experiment. The existence of intra-molecular hydrogen bond is conclusively established in the investigated molecules. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lepton masses and mixing angles via localization of 5-dimensional fields in the bulk are revisited in the context of Randall-Sundrum models. The Higgs is assumed to be localized on the IR brane. Three cases for neutrino masses are considered: (a) The higher-dimensional neutrino mass operator (LH.LH), (b) Dirac masses, and (c) Type I seesaw with bulk Majorana mass terms. Neutrino masses and mixing as well as charged lepton masses are fit in the first two cases using chi(2) minimization for the bulk mass parameters, while varying the O(1) Yukawa couplings between 0.1 and 4. Lepton flavor violation is studied for all the three cases. It is shown that large negative bulk mass parameters are required for the right-handed fields to fit the data in the LH.LH case. This case is characterized by a very large Kaluza-Klein (KK) spectrum and relatively weak flavor-violating constraints at leading order. The zero modes for the charged singlets are composite in this case, and their corresponding effective 4-dimensional Yukawa couplings to the KK modes could be large. For the Dirac case, good fits can be obtained for the bulk mass parameters, c(i), lying between 0 and 1. However, most of the ``best-fit regions'' are ruled out from flavor-violating constraints. In the bulk Majorana terms case, we have solved the profile equations numerically. We give example points for inverted hierarchy and normal hierarchy of neutrino masses. Lepton flavor violating rates are large for these points. We then discuss various minimal flavor violation schemes for Dirac and bulk Majorana cases. In the Dirac case with minimal-flavor-violation hypothesis, it is possible to simultaneously fit leptonic masses and mixing angles and alleviate lepton flavor violating constraints for KK modes with masses of around 3 TeV. Similar examples are also provided in the Majorana case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CAELinux is a Linux distribution which is bundled with free software packages related to Computer Aided Engineering (CAE). The free software packages include software that can build a three dimensional solid model, programs that can mesh a geometry, software for carrying out Finite Element Analysis (FEA), programs that can carry out image processing etc. Present work has two goals: 1) To give a brief description of CAELinux 2) To demonstrate that CAELinux could be useful for Computer Aided Engineering, using an example of the three dimensional reconstruction of a pig liver from a stack of CT-scan images. One can note that instead of using CAELinux, using commercial software for reconstructing the liver would cost a lot of money. One can also note that CAELinux is a free and open source operating system and all software packages that are included in the operating system are also free. Hence one can conclude that CAELinux could be a very useful tool in application areas like surgical simulation which require three dimensional reconstructions of biological organs. Also, one can see that CAELinux could be a very useful tool for Computer Aided Engineering, in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase equilibria in the system Tm-Rh-O at 1200 K is established by isothermal equilibration of selected compositions and phase identification after quenching to room temperature. Six intermetallic phases (Tm3Rh, Tm7Rh3, Tm5Rh3, Tm3Rh2, TmRh, TmRh2 +/-delta) and a ternary oxide TmRhO3 are identified. Based on experimentally determined phase relations, a solid-state electrochemical cell is devised to measure the standard free energy of formation of orthorhombic perovskite TmRhO3 from cubic Tm2O3 and beta-Rh2O3 in the temperature range from (900 to 1300) K. The results can be summarized as: Delta G(f,ox)(o) +/- 104/J.mol(-1) = -46474 + 3.925(T/K). Invoking the Neumann-Kopp rule, the standard enthalpy of formation of TmRhO3 from its constituent elements at 298.15 K is estimated as -1193.89 (+/- 2.86) kJ.mol(-1). The standard entropy of TmRhO3 at 298.15 K is evaluated as 103.8 (+/- 1.6) J.mol(-1).K-1. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1200 K and temperature-composition diagrams at constant partial pressures of oxygen are computed from thermodynamic data. The compound TmRhO3 decomposes at 1688 (+/- 2) K in pure oxygen and at 1583 (+/- 2) K in air at standard pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measure hyperfine structure in the metastable P-3(2) state of Yb-173 and extract the nuclear magnetic octupole moment. We populate the state using dipole-allowed transitions through the P-3(1) and S-3(1) states. We measure frequencies of hyperfine transitions of the P-3(2) -> S-3(1) line at 770 nm using a Rb-stabilized ring cavity resonator with a precision of 200 kHz. Second-order corrections due to perturbations from the nearby P-3(1) and P-1(1) states are below 30 kHz. We obtain the hyperfine coefficients as A = -742.11(2) MHz and B = 1339.2(2) MHz, which represent a two orders-of-magnitude improvement in precision, and C = 0.54(2) MHz. From atomic structure calculations, we obtain the nuclear moments quadrupole Q = 2.46(12) b and octupole Omega = -34.4(21) b x mu(N). DOI: 10.1103/PhysRevA.87.012512

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and beta-Rh2O3 with orthorhombic structure, can be represented by the equation: Delta G(f(OX))(O) (+/- 182)/J mol(-1) = -52710+3.821(T/K). By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema's model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential-composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature-composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (+/- 2.5) K in pure oxygen and 1,624 (+/- 2.5) K and in air at standard pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2,3-Unsaturated 3-arylsulfinyl pyranosides undergo nucleophilic additions at C-2, with facial selectivities depending on the nucleophile and the substituent on sulfinyl sulfur. The reactions of such sugar vinyl sulfoxides lead to the addition of nucleophile preferring an axial orientation at C-2, with concomitant formation of an allylic bond at C-3 to C-4. This trend in the addition pattern is observed for primary amine, carbon and sulfur nucleophiles, whereas secondary amines prefer an equatorial addition at C-2. The effect of p-tolylthio-versus (p-isopropylphenyl)thio vinyl sulfoxide is that the equatorial nucleophilic addition is preferred even more with the latter vinyl sulfoxide. (C) 2013 Published by Elsevier Ltd.