966 resultados para Subgrid-scale Modelling
Resumo:
This study determined the inter-tester and intra-tester reliability of physiotherapists measuring functional motor ability of traumatic brain injury clients using the Clinical Outcomes Variable Scale (COVS). To test inter-tester reliability, 14 physiotherapists scored the ability of 16 videotaped patients to execute the items that comprise the COVS. Intra-tester reliability was determined by four physiotherapists repeating their assessments after one week, and three months later. The intra-class correlation coefficients (ICC) were very high for both inter-tester reliability (ICC > 0.97 for total COVS scores, ICC > 0.93 for individual COVS items) and intra-tester reliability (ICC > 0.97). This study demonstrates that physiotherapists are reliable in the administration of the COVS.
Resumo:
In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.
Resumo:
The Flow State Scale-2 (FSS-2) and Dispositional Flow Scale-2 (DFS-2) are presented as two self-report instruments designed to assess flow experiences in physical activity. Item modifications were made to the original versions of these scales in order to improve the measurement of some of the flow dimensions. Confirmatory factor analyses of an item identification and a cross-validation sample demonstrated a good fit of the new scales. There was support for both a 9-first-order factor model and a higher order model with a global flow factor. The item identification sample yielded mean item loadings on the first-order factor of .78 for the FSS-2 and .77 for the DFS-2. Reliability estimates ranged from .80 to .90 for the FSS-2, and .81 to .90 for the DFS-2. In the cross-validation sample, mean item loadings on the first-order factor were .80 for the FSS-2, and .73 for the DFS-2. Reliability estimates ranged between .80 to .92 for the FSS-2 and .78 to .86 for the DFS-2. The scales are presented as ways of assessing flow experienced within a particular event (FSS-2) or the frequency of flow experiences in chosen physical activity in general (DFS-2).
Resumo:
A large number of models have been derived from the two-parameter Weibull distribution and are referred to as Weibull models. They exhibit a wide range of shapes for the density and hazard functions, which makes them suitable for modelling complex failure data sets. The WPP and IWPP plot allows one to determine in a systematic manner if one or more of these models are suitable for modelling a given data set. This paper deals with this topic.
Resumo:
Over the last decade, ambitious claims have been made in the management literature about the contribution of emotional intelligence to success and performance. Writers in this genre have predicted that individuals with high emotional intelligence perform better in all aspects of management. This paper outlines the development of a new emotional intelligence measure, the Workgroup Emotional Intelligence Profile, Version 3 (WEIP-3), which was designed specifically to profile the emotional intelligence of individuals in work teams. We applied the scale in a study of the link between emotional intelligence and two measures of team performance: team process effectiveness and team goal focus. The results suggest that the average level of emotional intelligence of team members, as measured by the WEIP-3, is reflected in the initial performance of teams. In our study, low emotional intelligence teams initially performed at a lower level than the high emotional intelligence teams. Over time, however, teams with low average emotional intelligence raised their performance to match that of teams with high emotional intelligence.
Resumo:
This paper proposes some variants of Temporal Defeasible Logic (TDL) to reason about normative modifications. These variants make it possible to differentiate cases in which, for example, modifications at some time change legal rules but their conclusions persist afterwards from cases where also their conclusions are blocked.
Resumo:
In natural estuaries, contaminant transport is driven by the turbulent momentum mixing. The predictions of scalar dispersion can rarely be predicted accurately because of a lack of fundamental understanding of the turbulence structure in estuaries. Herein detailed turbulence field measurements were conducted at high frequency and continuously for up to 50 hours per investigation in a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was deemed the most appropriate measurement technique for such small estuarine systems with shallow water depths (less than 0.5 m at low tides), and a thorough post-processing technique was applied. The estuarine flow is always a fluctuating process. The bulk flow parameters fluctuated with periods comparable to tidal cycles and other large-scale processes. But turbulence properties depended upon the instantaneous local flow properties. They were little affected by the flow history, but their structure and temporal variability were influenced by a variety of mechanisms. This resulted in behaviour which deviated from that for equilibrium turbulent boundary layer induced by velocity shear only. A striking feature of the data sets is the large fluctuations in all turbulence characteristics during the tidal cycle. This feature was rarely documented, but an important difference between the data sets used in this study from earlier reported measurements is that the present data were collected continuously at high frequency during relatively long periods. The findings bring new lights in the fluctuating nature of momentum exchange coefficients and integral time and length scales. These turbulent properties should not be assumed constant.
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
A Geographic Information System (GIS) was used to model datasets of Leyte Island, the Philippines, to identify land which was suitable for a forest extension program on the island. The datasets were modelled to provide maps of the distance of land from cities and towns, land which was a suitable elevation and slope for smallholder forestry and land of various soil types. An expert group was used to assign numeric site suitabilities to the soil types and maps of site suitability were used to assist the selection of municipalities for the provision of extension assistance to smallholders. Modelling of the datasets was facilitated by recent developments of the ArcGIS® suite of computer programs and derivation of elevation and slope was assisted by the availability of digital elevation models (DEM) produced by the Shuttle Radar Topography (SRTM) mission. The usefulness of GIS software as a decision support tool for small-scale forestry extension programs is discussed.
Resumo:
The present study was designed to test the utility of a stress-coping model of employee adjustment to organisational change. Specifically, it was proposed that employee adjustment to this type of work stress would be influenced by the characteristics of the change situation, employees' appraisals of the situation, their coping strategies, and the extent of their personal resources. Data were collected from 140 middle managers and supervisors involved in a large-scale public sector integration. The results of the research provided some support for the proposed model: high levels of psychological distress were related to a reliance on informal sources of information, high appraised stress, low appraised certainty, and the use of avoidant rather than problem-focused strategies, whereas poor social functioning was associated with low self-esteem, high levels or disruption across the period of change, a reliance on informal sources of information, and the use of avoidant coping strategies. There was no evidence that coping strategies mediated the effects of the event characteristics, situational appraisals, and personal resources on adjustment; however, there was some evidence linking these variables to coping strategies, in particular, problem-focused coping. There was also some evidence to indicate that the experience of organisational change was different for managers and supervisors: levels of threat were higher for the managers than the supervisors, but there was no difference between the groups of employees in terms of adjustment.
Resumo:
A new method of poly-beta-hydroxybutyrate (PHB) extraction from recombinant E. coli is proposed, using homogenization and centrifugation coupled with sodium hypochlorite treatment. The size of PHB granules and cell debris in homogenates was characterised as a function of the number of homogenization passes. Simulation was used to develop the PHB and cell debris fractionation system, enabling numerical examination of the effects of repeated homogenization and centrifuge-feedrate variation. The simulation provided a good prediction of experimental performance. Sodium hypochlorite treatment was necessary to optimise PHB fractionation. A PHB recovery of 80% at a purity of 96.5% was obtained with the final optimised process. Protein and DNA contained in the resultant product were negligible. The developed process holds promise for significantly reducing the recovery cost associated with PHB manufacture.
Resumo:
Fungal growth in time and space at the substrate surface was modelled for a simple system mimicking solid-state fermentation, using a polycarbonate Nucleopore membrane laid over a glucose solution. Biomass production depends on both tip density and the diffusion of glucose within the fungal hyphae. The model predicts early increases in both height and concentration, followed by a period in which the biomass profile moves with a constant wavefront. The rate of increase in height increases as tip diffusivity increases or as the Monod saturation constant for glucose decreases.