901 resultados para Subfractals, Subfractal Coding, Model Analysis, Digital Imaging, Pattern Recognition
Resumo:
Anaerobic threshold (AT) is usually estimated as a change point problem by visual analysis of the cardiorespiratory response to incremental dynamic exercise. In this study, two phase linear (TPL) models of the linear-linear and linear-quadratic type were used for the estimation of AT. The correlation coefficient between the classical and statistical approaches was 0.88, and 0.89 after outlier exclusion. The TPL models provide a simple method for estimating AT that can be easily implemented using a digital computer for the automatic pattern recognition of AT.
Resumo:
The mitotic and meiotic chromosomes of the beetles Epicauta atomaria (Meloidae) and Palembus dermestoides (Tenebrionidae) were analysed using standard staining, C-banding and silver impregnation techniques. We determine the diploid and haploid chromosome numbers, the sex determination system and describe the chromosomal morphology, the C-banding pattern and the chromosome(s) bearing NORs (nucleolar organizer regions). Both species shown 2n = 20 chromosomes, the chromosomal meioformula 9 + Xyp, and regular chromosome segregation during anaphases I and II. The chromosomes of E. atomaria are basically metacentric or submetacentric and P. dermestoides chromosomes are submetacentric or subtelocentric. In both beetles the constitutive heterochromatin is located in the pericentromeric region in all autosomes and in the Xp chromosome; additional C-bands were observed in telomeric region of the short arm in some autosomes in P. dermestoides. The yp chromosome did not show typical C-bands in these species. As for the synaptonemal complex, the nucleolar material is associated to the 7th bivalent in E. atomaria and 3rd and 7th bivalents in P. dermestoides. Strong silver impregnated material was observed in association with Xyp in light and electron microscopy preparations in these species and this material was interpreted to be related to nucleolar material.
Resumo:
A comparative study, with theoretical analysis and digital simulations, of two conditions based on LMI for the quadratic stability of nonlinear continuous-time dynamic systems, described by Takagi-Sugeno fuzzy models, are presented. This paper shows that the methods proposed by Teixeira et. al. in 2003 provide better or at least the same results of a recent method presented in the literature. © 2005 IEEE.
Resumo:
The aim of this paper is to present the current development status of a low cost system for surface reconstruction with structured light. The acquisition system is composed of a single off-the-shelf digital camera and a pattern projector. A pattern codification strategy was developed to allow the pattern recognition automatically and a calibration methodology ensures the determination of the direction vector of each pattern. The experiments indicated that an accuracy of 0.5mm in depth could be achieved for typical applications.
Resumo:
Digital technology has promoted a great popularization of photographic registration in several medical areas. Because of its visual nature, dermatology has incorporated the benefits of this tool in clinical practice and research. This article aims to offer guidance to the dermatologist who is unfamiliar with this technology, providing basic understanding for the best use of digital photography equipment. ©2006 by Anais Brasileiros de Dermatologia.
Resumo:
This paper proposes a methodology for edge detection in digital images using the Canny detector, but associated with a priori edge structure focusing by a nonlinear anisotropic diffusion via the partial differential equation (PDE). This strategy aims at minimizing the effect of the well-known duality of the Canny detector, under which is not possible to simultaneously enhance the insensitivity to image noise and the localization precision of detected edges. The process of anisotropic diffusion via thePDE is used to a priori focus the edge structure due to its notable characteristic in selectively smoothing the image, leaving the homogeneous regions strongly smoothed and mainly preserving the physical edges, i.e., those that are actually related to objects presented in the image. The solution for the mentioned duality consists in applying the Canny detector to a fine gaussian scale but only along the edge regions focused by the process of anisotropic diffusion via the PDE. The results have shown that the method is appropriate for applications involving automatic feature extraction, since it allowed the high-precision localization of thinned edges, which are usually related to objects present in the image. © Nauka/Interperiodica 2006.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This letter describes a novel algorithm that is based on autoregressive decomposition and pole tracking used to recognize two patterns of speech data: normal voice and disphonic voice caused by nodules. The presented method relates the poles and the peaks of the signal spectrum which represent the periodic components of the voice. The results show that the perturbation contained in the signal is clearly depicted by pole's positions. Their variability is related to jitter and shimmer. The pole dispersion for pathological voices is about 20% higher than for normal voices, therefore, the proposed approach is a more trustworthy measure than the classical ones. © 2007.
Resumo:
The advances in digital imaging technology in dentistry have provided an alternative to film-based radiography and have given new options to detect periodontal bone loss. The purpose of this study was to compare inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements. Thirty-five film-based periapical radiographs of patients suffering from moderate to advanced untreated periodontal bone loss associated to lower premolar and molars was selected from the department files, with 40 bone loss areas. The film-based radiographs were digitized with a flatbed scanner with a transparency and radiograph adapter used for transilluminating the radiograph imaging. Digitization was performed at 600 dpi and in gray scale. The images were digitized using Image Tool software by applying image inversion, that is, transformation of radiopaque structures into radiolucent structures and vice-versa. The digital data were saved as JPEG files. The images were displayed on a 15-inch and 24-bit video monitor under reduced room lighting. One calibrated examiner performed all radiographic measurements, three times, from the cementoenamel junction to the most apical extension of the bone loss, in both types of image (inverted and unprocessed). Brightness and contrast were adjusted according to the examiner's individual demand. Intraclass correlation coefficient was used to compare the measurements from both types of images. The means of radiographic measurements, in mm, for inverted and unprocessed digitized imaging were 6.4485 and 6.3790, respectively. The intraclass correlation coefficient was significant (0.99) The inverted and unprocessed digitized radiographic images were reliable and there was no difference in the diagnostic accuracy between these images regarding periodontal bone loss measurements.
Resumo:
The aim of this study was to evaluate the effect of radiotherapy on the radiopacity and flexural strength of composite resin. Forty Z250 composite resin specimens were polymerized using a halogen light-curing unit and divided into 5 groups, in accordance with the radiotherapy dose: G1- without irradiation, G2- 30 Gy, G3- 40 Gy, G4- 50 Gy and GS- 60 Gy Digital images were obtained using a GE 100 X-ray. Radiopacity values were obtained with the Digora digital imaging system and the flexural strength was evaluated with an EMIC universal testing machine. Data were submitted to ANOVA and Tukey 's test. G1 presented the highest radiopacity value, followed by G3, G5, G4 and G2. For flexural strength, G1 presented the lowest value, followed by G2, G5, G3 and G4. Differences were no significant (p>0.05). The commonly used dosage of radiotherapy treatment, did not cause alteration in the radiopacity and flexural strength of resin-based composites.
Resumo:
This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.
Resumo:
The constant increase in digital systems complexity definitely demands the automation of the corresponding synthesis process. This paper presents a computational environment designed to produce both software and hardware implementations of a system. The tool for code generation has been named ACG8051. As for the hardware synthesis there has been produced a larger environment consisting of four programs, namely: PIPE2TAB, AGPS, TABELA, and TAB2VHDL. ACG8051 and PIPE2TAB use place/transition net descriptions from PIPE as inputs. ACG8051 is aimed at generating assembly code for the 8051 micro-controller. PIPE2TAB produces a tabular version of a Mealy type finite state machine of the system, its output is fed into AGPS that is used for state allocation. The resulting digital system is then input to TABELA, which minimizes control functions and outputs of the digital system. Finally, the output generated by TABELA is fed to TAB2VHDL that produces a VHDL description of the system at the register transfer level. Thus, we present here a set of tools designed to take a high-level description of a digital system, represented by a place/transition net, and produces as output both an assembly code that can be immediately run on an 8051 micro-controller, and a VHDL description that can be used to directly implement the hardware parts either on an FPGA or as an ASIC.
Resumo:
The application of assisted reproduction techniques has provided help to many men seeking to father a child, although the current success of these procedures remains suboptimal. Today some protocols allow sperm to be selected according to their ultrastructural morphology or surface molecular characteristics. On the other hand, successful human reproduction relies partly on the inherent integrity of sperm DNA. Therefore, it is now necessary to improve the safety of the sperm selection method. It is urgent to optimize procedures to isolate spermatozoa for ICSI with low risk of DNA damage. In recent years, two technologies have attracted the attention of specialists as methods capable of identifying a spermatozoon with low risk of DNA damage: Ultrastructural morphology sperm selection at high magnification and sperm head birefringence selection. This review analyses these two technologies. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.
Resumo:
Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.