835 resultados para Structural modeling of digital informational environments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. METHODS: The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. RESULTS: The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. DISCUSSION: The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Papez circuit is one of the major pathways of the limbic system, and it is involved in the control of memory and emotion. Structural and functional alterations have been reported in psychiatric, neurodegenerative, and epileptic diseases. Despite the clinical interest, however, in-vivo imaging of the entire circuit remains a technological challenge. We used magnetic resonance diffusion spectrum imaging to comprehensively picture the Papez circuit in healthy humans: (i) the hippocampus-mammillary body pathway, (ii) the connections between the lateral subiculum and the cingulate cortex, and (iii) the mammillo-thalamic tract. The diagnostic and therapeutic implications of these results are discussed in the context of recent findings reporting the involvement of the Papez circuit in neurological and psychiatric diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yosemite Valley poses significant rockfall hazard and related risk due to its glacially steepened walls and approximately 4 million visitors annually. To assess rockfall hazard, it is necessary to evaluate the geologic structure that contributes to the destabilization of rockfall sources and locate the most probable future source areas. Coupling new remote sensing techniques (Terrestrial Laser Scanning, Aerial Laser Scanning) and traditional field surveys, we investigated the regional geologic and structural setting, the orientation of the primary discontinuity sets for large areas of Yosemite Valley, and the specific discontinuity sets present at active rockfall sources. This information, combined with better understanding of the geologic processes that contribute to the progressive destabilization and triggering of granitic rock slabs, contributes to a more accurate rockfall susceptibility assessment for Yosemite Valley and elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continental subduction-related and multistage exhumation process for the Tso Morari ultra-high pressure nappe is proposed. The model is constrained by published thermo-barometry and age data, combined with new geological and tectonic maps. Additionally, observations on the structural and metamorphic evolution of the Tso Morari area and the North Himalayan nappes are presented. The northern margin of the Indian continental crust was subducted to a depth of >90 km below Asia after continental collision some 55 Ma ago. The underthrusting was accompanied by the detachment and accretion of Late Proterozoic to Early Eocene sediments, creating the North Himalayan accretionary wedge, in front of the active Asian margin and the 103-50 Ma Ladakh arc batholith. The basic dikes in the Ordovician Tso Morari granite were transformed to eclogites with crystallization of coesite, some 53 Ma ago at a depth of >90 kin (>27 kbar) and temperatures of 500 to 600 degrees C. The detachment and extrusion of the low density Tso Morari nappe, composed of 70% of the Tso Morari granite and 30% of graywackes with some eclogitic dikes, occurred by ductile pure and simple shear deformation. It was pushed by buoyancy forces and by squeezing between the underthrusted Indian lithosphere and the Asian mantle wedge. The extruding Tso Morari nappe reached a depth of 35 km at the base of the North Himalayan accretionary wedge some 48 Ma ago. There the whole nappe stack recrystallized under amphibolite facies conditions of a Barrovian regional metamorphism with a metamorphic field gradient of 20 degrees C/km. An intense schistosity with a W-E oriented stretching lineation L, and top-to-the E shear criteria and crystallization of oriented sillimanite needles after kyanite, testify to the Tso Morari nappe extrusion and pressure drop. The whole nappe stack, comprising from the base to top the Tso Morari, Tetraogal, Karzok and Mata-Nyimaling-Tsarap nappes, was overprinted by new schistosities with a first N-directed and a second NE-directed stretching lineation L-2 and L-3 reaching the base of the North Himalayan accretionary wedge. They are characterized by top-to-the S and SW shear criteria. This structural overprint was related to an early N- and a younger NE-directed underthrusting of the Indian plate below Asia that was accompanied by anticlockwise rotation of India. The warping of the Tso Morari dome started already some 48 Ma ago with the formation of an extruding nappe at depth. The Tso Morari dome reached a depth of 15 km about 40 Ma ago in the eastern Kiagar La region and 30 Ma ago in the western Nuruchan region. The extrusion rate was of about 3 cm/yr between 53 and 48 Ma, followed by an uplift rate of 1.2 mm/yr between 48 and 30 Ma and of only 0.5 mm/yr after 30 Ma. Geomorphology observations show that the Tso Morari dome is still affected by faults, open regional dome, and basin and pull-apart structures, in a zone of active dextral transpression parallel to the Indus Suture zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To assess the digital educational technology interface Caring for the sensory environment in the neonatal unit: noise, lighting and handling based on ergonomic criteria. METHODS Descriptive study, in which we used the guidelines and ergonomic criteria established by ISO 9241-11 and an online Likert scale instrument to identify problems and interface qualities. The instrument was built based on Ergolist, which follows the criteria of ISO 9141-11. There were 58 undergraduate study participants from the School of Nursing of Ribeirao Preto, University of Sao Paulo, who attended the classes about neonatal nursing content. RESULTS All items were positively evaluated by more than 70% of the sample. CONCLUSION Educational technology is appropriate according to the ergonomic criteria and can be made available for teaching nursing students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intuitively, we think of perception as providing us with direct cognitive access to physical objects and their properties. But this common sense picture of perception becomes problematic when we notice that perception is not always veridical. In fact, reflection on illusions and hallucinations seems to indicate that perception cannot be what it intuitively appears to be. This clash between intuition and reflection is what generates the puzzle of perception. The task and enterprise of unravelling this puzzle took, and still takes, centre stage in the philosophy of perception. The goal of my dissertation is to make a contribution to this enterprise by formulating and defending a new structural approach to perception and perceptual consciousness. The argument for my structural approach is developed in several steps. Firstly, I develop an empirically inspired causal argument against naïve and direct realist conceptions of perceptual consciousness. Basically, the argument says that perception and hallucination can have the same proximal causes and must thus belong to the same mental kind. I emphasise that this insight gives us good reasons to abandon what we are instinctively driven to believe - namely that perception is directly about the outside physical world. The causal argument essentially highlights that the information that the subject acquires in perceiving a worldly object is always indirect. To put it another way, the argument shows that what we, as perceivers, are immediately aware of, is not an aspect of the world but an aspect of our sensory response to it. A view like this is traditionally known as a Representative Theory of Perception. As a second step, emphasis is put on the task of defending and promoting a new structural version of the Representative Theory of Perception; one that is immune to some major objections that have been standardly levelled at other Representative Theories of Perception. As part of this defence and promotion, I argue that it is only the structural features of perceptual experiences that are fit to represent the empirical world. This line of thought is backed up by a detailed study of the intriguing phenomenon of synaesthesia. More precisely, I concentrate on empirical cases of synaesthetic experiences and argue that some of them provide support for a structural approach to perception. The general picture that emerges in this dissertation is a new perspective on perceptual consciousness that is structural through and through.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper sets up and estimates a structuralmodel of Australia as a small open economyusing Bayesian techniques. Unlike other recentstudies, the paper shows that a small microfoundedmodel can capture the open economydimensions quite well. Specifically, the modelattributes a substantial fraction of the volatilityof domestic output and inflation to foreigndisturbances, close to what is suggested by unrestrictedVAR studies. The paper also investigatesthe effects of various exogenous shockson the Australian economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the dynamics of US output and inflation using a structural time varyingcoefficient VAR. We show that there are changes in the volatility of both variables andin the persistence of inflation. Technology shocks explain changes in output volatility,while a combination of technology, demand and monetary shocks explain variations inthe persistence and volatility of inflation. We detect changes over time in the transmission of technology shocks and in the variance of technology and of monetary policyshocks. Hours and labor productivity always increase in response to technology shocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper makes progress in explaining the role of capital for inflation and output dynamics. We followWoodford (2003, Ch. 5) in assuming Calvo pricing combined with a convex capital adjustment cost at the firm level. Our main result is that capital accumulation affects inflation dynamics primarily through its impact on the marginal cost. This mechanism is much simpler than the one implied by the analysis in Woodford's text. The reason is that his analysis suffers from a conceptual mistake, as we show. The latter obscures the economic mechanism through which capital affects inflation and output dynamics in the Calvo model, as discussed in Woodford (2004).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the dynamics of output growth and inflation in the US, Euro area and UK using a structural time varying coefficient VAR. There are important similarities in structural inflation dynamics across countries; output growth dynamics differ. Swings in the magnitude of inflation and output growth volatilities and persistences are accounted for by a combination of three structural shocks. Changes over time in the structure of the economy are limited and permanent variations largely absent. Changes in the volatilities of structural shocks matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Interindividual variations in regional structural properties covary across the brain, thus forming networks that change as a result of aging and accompanying neurological conditions. The alterations of superficial white matter (SWM) in Alzheimer's disease (AD) are of special interest, since they follow the AD-specific pattern characterized by the strongest neurodegeneration of the medial temporal lobe and association cortices. METHODS: Here, we present an SWM network analysis in comparison with SWM topography based on the myelin content quantified with magnetization transfer ratio (MTR) for 39 areas in each hemisphere in 15 AD patients and 15 controls. The networks are represented by graphs, in which nodes correspond to the areas, and edges denote statistical associations between them. RESULTS: In both groups, the networks were characterized by asymmetrically distributed edges (predominantly in the left hemisphere). The AD-related differences were also leftward. The edges lost due to AD tended to connect nodes in the temporal lobe to other lobes or nodes within or between the latter lobes. The newly gained edges were mostly confined to the temporal and paralimbic regions, which manifest demyelination of SWM already in mild AD. CONCLUSION: This pattern suggests that the AD pathological process coordinates SWM demyelination in the temporal and paralimbic regions, but not elsewhere. A comparison of the MTR maps with MTR-based networks shows that although, in general, the changes in network architecture in AD recapitulate the topography of (de)myelination, some aspects of structural covariance (including the interhemispheric asymmetry of networks) have no immediate reflection in the myelination pattern.