987 resultados para Stroke index
Resumo:
The effective refractive index of a kind of granular composite, which consists of granular metallic and magnetic inclusions with different radius embedded in a host medium, is theoretically investigated. Results show that for certain volume fractions of these two inclusions, the negative permittivity peak shifts to low frequency and the peak value increases with increasing radius ratio of the radius of magnetic granulae to that of metallic granulae. Simultaneously, peak value of permeability decreases with the radius ratio, and value peak shifts to high frequency with increasing volume fraction of magnetic inclusion. Therefore, the radius ratio can affect the effective refractive index considerably, and it is found that by adjusting the radius ratio, the refractive index may change between negative and positive values for certain volume fractions of the two inclusions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
615 p.
Resumo:
Graded-index (GRIN) fiber lens arrays are fabricated from commercial GRIN fibers to collimate a high-power laser diode array. The beam divergence angles are reduced to 4.2 and 14.7 mrad in the fast and slow axes, respectively. The influences of smile and fluctuation in fiber length are discussed. Using an aspherical focal lens system, about 74% power can be launched into a fiber with a numerical aperture (NA) of 0.22 and a core diameter of 400 mu m. (c) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
This is about the first reported laser glass with very low no, high Er3+ concentration and no quenching. In this work, a series of high Er3+ concentration (10.6-12.2 x 10(20) ions/cm(3)), low refractive index (n(1550) < 1.47) and relatively high fluorescence lifetime (6.8-12.6 ms) fluorophosphate glasses were made. A cw-pumping evanescent wave optical amplifier experiment was performed with it, and a relative gain of around 2dB at 1550 nm wavelength was achieved while the noise level was almost unchanged. To our knowledge, this is the first successful relative gain in evanescent wave optical amplifiers (EWOA) demonstrated with cw pumping. It is a valuable study of specially designed fluorophosphate glass suitable for EWOA communication experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report femtosecond laser induced valence state and refractive index change in transparent Sin(3+)-doped fluoroaluminate glass. The effect of annealing on the induced changes was studied and the thermal stability of these changes was discussed. The results show that the femtosecond laser induced valence state change is more stable than the induced refractive index change. The observed phenomenon could be applied to design the thermally erasable or stable storage medium. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report refractive index change in a femtosecond laser irradiated Nd3+-doped phosphate glass. The effects of annealing temperature on the refractive index change of the glass have been investigated. Absorption spectra of the glass sample before and after femtosecond laser irradiation and subsequent annealing were measured. The results indicate that multiphoton absorption can undertake although there are intrinsic absorption for the glass in irradiation wavelength. The results may be useful for fabrication of three-dimensional integrated optics devices and waveguide laser devices in this glass. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Glancing angle deposition is a novel method to prepare graded index coatings. By using this method and physical vapour deposition, ZrO2 is used to engineer graded index filter on BK7 glass substrate. Controlling the deposition rate and the periodic oscillation of oblique angle of deposited material, a 10-period graded index ZrO2 filter with high reflection near 532 nm and high transmittance at wavelength 1064 nm is fabricated. The causes of difference between the theoretical and experimental results are discussed in detail. The material properties and electron gun nonlinearity are possibly the main origins of the difference, which result in the variations in both thickness control and deposition rate of the Elm material.
Resumo:
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere.
Resumo:
The well known 'crystal seed' theory is first applied in this work to prepare TiO2 film: a high refractive index rutile TiO2 film is grown by electron beam evaporation on the rutile seed formed by 1100 degrees C annealing. The average n is larger than 2.4, by far the highest in all the authors' TiO2 films. The films are characterised by optical properties, microstructure and surface morphologies. It is found that the refractive index shows positive relation with the crystal structure, grain size, and packing density and roughness of the film. The film has lower density of granularity and nodule defects on the surface than those of the film deposited by magnetron sputtering. The result shows attractive application in complex filter and laser coatings.
Resumo:
This paper deals with the resource allocation problem aimed at maximizing users' perception of quality in wireless channels with time-varying capacity. First of all, we model the subjective quality-aware scheduling problem in the framework of Markovian decision processes. Then, given that the obtaining of the optimal solution of this model is unachievable, we propose a simple scheduling index rule with closed-form expression by using a methodology based on Whittle approach. Finally, we analyze the performance of the achieved scheduling proposal in several relevant scenarios, concluding that it outperforms the most popular existing resource allocation strategies.