933 resultados para Statistical factora analysis
Resumo:
Background: Suicide is a leading cause of death worldwide. Mental disorders are among the strongest predictors of suicide; however, little is known about which disorders are uniquely predictive of suicidal behavior, the extent to which disorders predict suicide attempts beyond their association with suicidal thoughts, and whether these associations are similar across developed and developing countries. This study was designed to test each of these questions with a focus on nonfatal suicide attempts. Methods and Findings: Data on the lifetime presence and age-of-onset of Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) mental disorders and nonfatal suicidal behaviors were collected via structured face-to-face interviews with 108,664 respondents from 21 countries participating in the WHO World Mental Health Surveys. The results show that each lifetime disorder examined significantly predicts the subsequent first onset of suicide attempt (odds ratios [ORs] = 2.9-8.9). After controlling for comorbidity, these associations decreased substantially (ORs = 1.5-5.6) but remained significant in most cases. Overall, mental disorders were equally predictive in developed and developing countries, with a key difference being that the strongest predictors of suicide attempts in developed countries were mood disorders, whereas in developing countries impulse-control, substance use, and post-traumatic stress disorders were most predictive. Disaggregation of the associations between mental disorders and nonfatal suicide attempts showed that these associations are largely due to disorders predicting the onset of suicidal thoughts rather than predicting progression from thoughts to attempts. In the few instances where mental disorders predicted the transition from suicidal thoughts to attempts, the significant disorders are characterized by anxiety and poor impulse-control. The limitations of this study include the use of retrospective self-reports of lifetime occurrence and age-of-onset of mental disorders and suicidal behaviors, as well as the narrow focus on mental disorders as predictors of nonfatal suicidal behaviors, each of which must be addressed in future studies. Conclusions: This study found that a wide range of mental disorders increased the odds of experiencing suicide ideation. However, after controlling for psychiatric comorbidity, only disorders characterized by anxiety and poor impulse-control predict which people with suicide ideation act on such thoughts. These findings provide a more fine-grained understanding of the associations between mental disorders and subsequent suicidal behavior than previously available and indicate that mental disorders predict suicidal behaviors similarly in both developed and developing countries. Future research is needed to delineate the mechanisms through which people come to think about suicide and subsequently progress from ideation to attempts.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
Resumo:
Objective: The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. Background Data: There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Materials and Methods: Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Results: Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). Conclusion: When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.
Resumo:
Background: Dermatomyositis (DM) and polymyositis (PM) are rare systemic autoimmune rheumatic diseases with high fatality rates. There have been few population-based mortality studies of dermatomyositis and polymyositis in the world, and none have been conducted in Brazil. The objective of the present study was to employ multiple-cause of-death methodology in the analysis of trends in mortality related to dermatomyositis and polymyositis in the state of Sao Paulo, Brazil, between 1985 and 2007. Methods: We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which DM or PM was listed as a cause of death. The variables sex, age and underlying, associated or total mentions of causes of death were studied using mortality rates, proportions and historical trends. Statistical analysis were performed by chi-square and H Kruskal-Wallis tests, variance analysis and linear regression. A p value less than 0.05 was regarded as significant. Results: Over a 23-year period, there were 318 DM-related deaths and 316 PM-related deaths. Overall, DM/PM was designated as an underlying cause in 55.2% and as an associated cause in 44.8%; among 634 total deaths females accounted for 71.5%. During the study period, age-and gender-adjusted DM mortality rates did not change significantly, although PM as an underlying cause and total mentions of PM trended lower (p < 0.05). The mean ages at death were 47.76 +/- 20.81 years for DM and 54.24 +/- 17.94 years for PM (p = 0.0003). For DM/PM, respectively, as underlying causes, the principal associated causes of death were as follows: pneumonia (in 43.8%/33.5%); respiratory failure (in 34.4%/32.3%); interstitial pulmonary diseases and other pulmonary conditions (in 28.9%/17.6%); and septicemia (in 22.8%/15.9%). For DM/PM, respectively, as associated causes, the following were the principal underlying causes of death: respiratory disorders (in 28.3%/26.0%); circulatory disorders (in 17.4%/20.5%); neoplasms (in 16.7%/13.7%); infectious and parasitic diseases (in 11.6%/9.6%); and gastrointestinal disorders (in 8.0%/4.8%). Of the 318 DM-related deaths, 36 involved neoplasms, compared with 20 of the 316 PM-related deaths (p = 0.03). Conclusions: Our study using multiple cause of deaths found that DM/PM were identified as the underlying cause of death in only 55.2% of the deaths, indicating that both diseases were underestimated in the primary mortality statistics. We observed a predominance of deaths in women and in older individuals, as well as a trend toward stability in the mortality rates. We have confirmed that the risk of death is greater when either disease is accompanied by neoplasm, albeit to lesser degree in individuals with PM. The investigation of the underlying and associated causes of death related to DM/PM broaden the knowledge of the natural history of both diseases and could help integrate mortality data for use in the evaluation of control measures for DM/PM.
Resumo:
Aims. A model-independent reconstruction of the cosmic expansion rate is essential to a robust analysis of cosmological observations. Our goal is to demonstrate that current data are able to provide reasonable constraints on the behavior of the Hubble parameter with redshift, independently of any cosmological model or underlying gravity theory. Methods. Using type Ia supernova data, we show that it is possible to analytically calculate the Fisher matrix components in a Hubble parameter analysis without assumptions about the energy content of the Universe. We used a principal component analysis to reconstruct the Hubble parameter as a linear combination of the Fisher matrix eigenvectors (principal components). To suppress the bias introduced by the high redshift behavior of the components, we considered the value of the Hubble parameter at high redshift as a free parameter. We first tested our procedure using a mock sample of type Ia supernova observations, we then applied it to the real data compiled by the Sloan Digital Sky Survey (SDSS) group. Results. In the mock sample analysis, we demonstrate that it is possible to drastically suppress the bias introduced by the high redshift behavior of the principal components. Applying our procedure to the real data, we show that it allows us to determine the behavior of the Hubble parameter with reasonable uncertainty, without introducing any ad-hoc parameterizations. Beyond that, our reconstruction agrees with completely independent measurements of the Hubble parameter obtained from red-envelope galaxies.
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
An approach was developed for the preparation of cryogenic ground spiked filter papers with Cu and Zn for use as synthetic calibrating standards for direct solid microanalysis. Solid sampling graphite furnace atomic absorption spectrometry was used to evaluate the microhomogeneity and to check the applicability of the synthetic calibrating standards for the direct determination of Cu and Zn in vegetable certified reference materials. The found concentrations presented no statistical differences at the 95% confidence level. The homogeneity factors ranged from 2.7 to 4.2 for Cu and from 6.4 to 11.5 for Zn.
Resumo:
This article intends to contribute to the reflection on the Educational Statistics as being source for the researches on History of Education. The main concern was to reveal the way Educational Statistics related to the period from 1871 to 1931 were produced, in central government. Official reports - from the General Statistics Directory - and Statistics yearbooks released by that department were analyzed and, on this analysis, recommendations and definitions to perform the works were sought. By rending problematic to the documental issues on Educational Statistics and their usual interpretations, the intention was to reduce the ignorance about the origin of the school numbers, which are occasionally used in current researches without the convenient critical exam.
Resumo:
This paper aims to study evolution of increase, distribution and classification of pits in 310S austenitic stainless steels obtained in the state as-received and heat-treated under different exposure times in saline. This work applicability has been based on a technique development for morphologic characterization of localized corrosion associated with description aspects of shapes, size and population-specific parameters. Methodology has been consisted in the following steps: specimens preparation, corrosion tests via salt spray in different conditions, microstructural analysis, pits profiles analysis and images analysis, digital processing and image analysis in order to characterize the pits distribution, morphology and size. Results obtained in digital processing and profiles image analysis have been subjected to statistical analysis using median as parameter in the alloy as received and treated. The alloy as received displays the following morphology: hemispheric pits> transition region A> transition region B> irregular> conic. The pits amount in the treated alloy at each exposure time is: transition region B> hemispherical> transition region A> conic> irregular.
Resumo:
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.
Resumo:
A combination of deductive reasoning, clustering, and inductive learning is given as an example of a hybrid system for exploratory data analysis. Visualization is replaced by a dialogue with the data.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
This paper is part of a large study to assess the adequacy of the use of multivariate statistical techniques in theses and dissertations of some higher education institutions in the area of marketing with theme of consumer behavior from 1997 to 2006. The regression and conjoint analysis are focused on in this paper, two techniques with great potential of use in marketing studies. The objective of this study was to analyze whether the employement of these techniques suits the needs of the research problem presented in as well as to evaluate the level of success in meeting their premisses. Overall, the results suggest the need for more involvement of researchers in the verification of all the theoretical precepts of application of the techniques classified in the category of investigation of dependence among variables.
Resumo:
Background-Randomized trials that studied clinical outcomes after percutaneous coronary intervention (PCI) with bare metal stenting versus coronary artery bypass grafting (CABG) are underpowered to properly assess safety end points like death, stroke, and myocardial infarction. Pooling data from randomized controlled trials increases the statistical power and allows better assessment of the treatment effect in high-risk subgroups. Methods and Results-We performed a pooled analysis of 3051 patients in 4 randomized trials evaluating the relative safety and efficacy of PCI with stenting and CABG at 5 years for the treatment of multivessel coronary artery disease. The primary end point was the composite end point of death, stroke, or myocardial infarction. The secondary end point was the occurrence of major adverse cardiac and cerebrovascular accidents, death, stroke, myocardial infarction, and repeat revascularization. We tested for heterogeneities in treatment effect in patient subgroups. At 5 years, the cumulative incidence of death, myocardial infarction, and stroke was similar in patients randomized to PCI with stenting versus CABG (16.7% versus 16.9%, respectively; hazard ratio, 1.04, 95% confidence interval, 0.86 to 1.27; P = 0.69). Repeat revascularization, however, occurred significantly more frequently after PCI than CABG (29.0% versus 7.9%, respectively; hazard ratio, 0.23; 95% confidence interval, 0.18 to 0.29; P<0.001). Major adverse cardiac and cerebrovascular events were significantly higher in the PCI than the CABG group (39.2% versus 23.0%, respectively; hazard ratio, 0.53; 95% confidence interval, 0.45 to 0.61; P<0.001). No heterogeneity of treatment effect was found in the subgroups, including diabetic patients and those presenting with 3-vessel disease. Conclusions-In this pooled analysis of 4 randomized trials, PCI with stenting was associated with a long-term safety profile similar to that of CABG. However, as a result of persistently lower repeat revascularization rates in the CABG patients, overall major adverse cardiac and cerebrovascular event rates were significantly lower in the CABG group at 5 years.
Resumo:
Aims: This study has compared the tissue expression of the p53 tumour suppressor protein and DNA repair proteins APE1, hMSH2 and ERCC1 in normal, dysplastic and malignant lip epithelium. Methods and results: Morphological analysis and immunohistochemistry were performed on archived specimens of normal lip mucosa (n = 15), actinic cheilitis (AC) (n = 30), and lip squamous cell carcinoma (LSCC) (n = 27). AC samples were classified morphologically according to the severity of epithelial dysplasia and risk of malignant transformation. LSCC samples were morphologically staged according to WHO and invasive front grading (IFG) criteria. Differences between groups and morphological stages were determined by bivariate statistical analysis. Progressive increases in the percentage of epithelial cells expressing p53 and APE1 were associated with increases in morphological malignancy from normal lip mucosa to LSCC. There was also a significant reduction in epithelial cells expressing hMSH2 and ERCC1 proteins in the AC and LSCC groups. A higher percentage of malignant cells expressing APE1 was found in samples with an aggressive morphological IFG grade. Conclusions: Our data showed that epithelial cells from premalignant to malignant lip disease exhibited changes in the expression of p53, APE1, hMSH2 and ERCC1 proteins; these molecular change might contribute to lip carcinogenesis.