931 resultados para Stars: massive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the study of the Topologically Massive Theories under the Hamilton-Jacobi, we now analyze the constraint structure of the Self-Dual model as well as its correspondence with the Topologically Massive Electrodynamics. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we obtain all possible second-order theories for a rank-2 tensor which describe a massive spin-2 particle. We start with a general second-order Lagrangian with ten real parameters. The absence of lower-spin modes and the existence of two local field redefinitions leads us to only one free parameter. The solutions are split into three one-parameter classes according to the local symmetries of the massless limit. In the class which contains the usual massive Fierz-Pauli theory, the subset of spin-1 massless symmetries is maximal. In another class where the subset of spin-0 symmetries is maximal, the massless theory is invariant under Weyl transformations and the mass term does not need to fit into the form of the Fierz-Pauli mass term. In the remaining third class neither the spin-1 nor the spin-0 symmetry is maximal and we have a new family of spin-2 massive theories. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is possible to show that there are three independent families of models describing a massive spin-2 particle via a rank-2 tensor. One of them contains the massive Fierz-Pauli model, the only case described by a symmetric tensor. The three families have different local symmetries in the massless limit and can not be interconnected by any local field redefinition. We show here, however, that they can be related with the help of a decoupled and nondynamic (spectator) field. The spectator field may be either an antisymmetric tensor B μν=-Bνμ, a vector Aμ or a scalar field φ, corresponding to each of the three families. The addition of the extra field allows us to formulate master actions which interpolate between the symmetric Fierz-Pauli theory and the other models. We argue that massive gravity models based on the Fierz-Pauli theory are not expected to be equivalent to possible local self-interacting theories built up on top of the two new families of massive spin-2 models. The approach used here may be useful to investigate dual (nonsymmetric) formulations of higher-spin particles. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the scalar radiation emitted by a source in uniform circular motion in Minkowski spacetime interacting with a massive Klein-Gordon field. We assume the source rotating around a central object due to a Newtonian force. By considering the canonical quantization of this field, we use perturbation theory to compute the radiation emitted at the tree level. Regarding the initial state of the field as being the Minkowski vacuum, we compute the emission amplitude for the rotating source, assuming it as being minimally coupled to the massive Klein-Gordon field. We then compute the power emitted by the swirling source as a function of its angular velocity, as measured by asymptotic static observers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)