960 resultados para Standard error
Magnetic properties and incompatible element geochemistry of some igneous rocks at DSDP Leg 64 Holes
Resumo:
I received five unoriented samples of igneous rocks from four Sites of Leg 64 of the Deep Sea Drilling Project (DSDP). I have measured several magnetic properties, alkalis (K, Rb, and Cs), alkaline-earth (Ba and Sr) element concentrations, and 87Sr/86Sr ratios of these samples. This study reports the results.
Resumo:
Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased 50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.
Resumo:
The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 > epsilon-Nd(t) > ~10.81) and Pb (18.625 < 206/4Pb < 18.879; 15.624 < 207/4Pb < 15.666; 38.611 < 208/4Pb < 38.960; 0.8294 < 207/6Pb < 0.8389; 2.0539 < 208/6Pb < 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the changes with time in the isotopically well-defined dust flux and Nd and Pb isotopic compositions of Pacific deep water allow one to draw two major conclusions: (1) dust-bound Nd became a resolvable contribution to Pacific seawater only after the one order of magnitude increase in dust flux starting at ~3.5 Ma. Therefore eolian Nd was unimportant for Pacific seawater Nd prior to 3.5 Ma. (2) The lack of a response of Pacific deep water Pb to this huge flux increase suggests that dust-bound Pb has never been important. Instead, mobile Pb associated with island arc volcanic exhalatives probably consists of a significant contribution to Pacific deep water Pb and possibly to seawater elsewhere far away from landmasses.
Resumo:
Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous algae respond to UVR and ocean acidification. Therefore, we conducted an experiment to determine the effects of UVR and ocean acidification on the calcified rhodophyte Corallina officinalis using CO2-enriched cultures with and without UVR exposure. Low pH increased the relative electron transport rates (rETR) but decreased the CaCO3 content and had a miniscule effect on growth. However, UVA (4.25 W m-2) and a moderate level of UVB (0.5 W m-2) increased the rETR and growth rates in C. officinalis, and there was a significant interactive effect of pH and UVR on UVR-absorbing compound concentrations. Thus, at low irradiance, pH and UVR interact in a way that affects the multiple physiological responses of C. officinalis differently. In particular, changes in the skeletal content induced by low pH may affect how C. officinalis absorbs and uses light. Therefore, the light quality used in ocean acidification experiments will affect the predictions of how calcified macroalgae will respond to elevated CO2.
Resumo:
The effect of short-term (5 days) exposure to CO2-acidified seawater (year 2100 predicted values, ocean pH = 7.6) on key aspects of the function of the intertidal common limpet Patella vulgata (Gastropoda: Patellidae) was investigated. Changes in extracellular acid-base balance were almost completely compensated by an increase in bicarbonate ions. A concomitant increase in haemolymph Ca2+ and visible shell dissolution implicated passive shell dissolution as the bicarbonate source. Analysis of the radula using SEM revealed that individuals from the hypercapnic treatment showed an increase in the number of damaged teeth and the extent to which such teeth were damaged compared with controls. As radula teeth are composed mainly of chitin, acid dissolution seems unlikely, and so the proximate cause of damage is unknown. There was no hypercapnia-related change in metabolism (O2 uptake) or feeding rate, also discounting the possibility that teeth damage was a result of a CO2-related increase in grazing. We conclude that although the limpet appears to have the physiological capacity to maintain its extracellular acid-base balance, metabolism and feeding rate over a 5 days exposure to acidified seawater, radular damage somehow incurred during this time could still compromise feeding in the longer term, in turn decreasing the top-down ecosystem control that P. vulgata exerts over rocky shore environments.
Resumo:
Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP 8.5 to examine the combined effects of rising ocean acidity and sea surface temperature (SST) on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2 and temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest temperature-pCO2 condition. In contrast, dissolution increased linearly with temperature-pCO2 . The rubble community switched from net calcification to net dissolution at +271 µatm pCO2 and 0.75 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that (i) dissolution may be more sensitive to climate change than calcification and (ii) that calcification and dissolution have different functional responses to climate stressors; this highlights the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.
Resumo:
The basement of southern Kirwanveggen (western Dronning Maud Land) is formed by a SSW-dipping section consisting of (from SW to NE): migmatic gneisses; granitoid; low-grade/prograde meta-pelites, meta-psammites and meta-basalts (= "Polaris Formation"); ortho-gneiss; quartzite mylonite; Polaris Formation; quartzite mylonite; meta-turbidites. These units are (partly) separated by at least four SSW-dipping, NE to N directed major thrusts. Most probably, this thrust system is of Pan-African age. Towards north, the section is followed by the molasse-like Urfjell Group, deposited later than approx. 550 Ma and earlier than 450 Ma. Similarities with the Pan-African of the Shackleton Range (thrusting, molasse) led to the assumption, that the East/West Gondwana suture runs from the Shackleton Range towards Sor Rondane (eastern Dronning Maud Land) passing southern Kirwanveggen at its south-east.
Resumo:
The paper reports the first data on geochemistry and U-Pb SHRIMP geochronology of zircons from garnet amphibolites whose fragments are hosted by the sole of the ophiolite complex of the Kamchatsky Cape, eastern Kamchatka. The zircons compose homogeneous sampling, have relatively small sizes, are anhedral, have no oscillatory zoning, and possess practically no inclusions. Chemical and photoluminescent characteristics of the zircons testify to their metamorphic genesis. U-Pb SHRIMP dates of the zircons (81.4+/-9.6 Ma) indicate that metamorphism of the amphibolite complex took place in Campanian, Late Cretaceous. These dates seem to correspond to the peak of high-pressure metamorphism, which is thought to be related to origin of an ophiolite complex of the suprasubduction type and its uplift within the Kronotsky Island arc.
Resumo:
Studies from the subtropical western and eastern Atlantic Ocean, using the 231Pa/230Th ratio as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of meridional overturning circulation (MOC) over the last deglaciation. In this study, we present a compilation of existing and new sedimentary 231Pa/230Th records from North Atlantic cores between 1710 and 4550 m water depth. Comparing sedimentary 231Pa/230Th from different depths provides new insights into the evolution of the geometry and rate of deep water formation in the North Atlantic during the last 20,000 years. The 231Pa/230Th ratio measured in upper Holocene sediments indicates slow water renewal above ?2500 m and rapid flushing below, consistent with our understanding of modern circulation. In contrast, during the Last Glacial Maximum (LGM), Glacial North Atlantic Intermediate Water (GNAIW) drove a rapid overturning circulation to a depth of at least ?3000 m depth. Below ~4000 m, water renewal was much slower than today. At the onset of Heinrich event 1, transport by the overturning circulation declined at all depths. GNAIW shoaled above 3000 m and significantly weakened but did not totally shut down. During the Bølling-Allerød (BA) that followed, water renewal rates further decreased above 2000 m but increased below. Our results suggest for the first time that ocean circulation during that period was quite distinct from the modern circulation mode, with a comparatively higher renewal rate above 3000 m and a lower renewal rate below in a pattern similar to the LGM but less accentuated. MOC during the Younger Dryas appears very similar to BA down to 2000 m and slightly slower below.
Resumo:
Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 µatm) and light (photosynthetically active radiation 35, 65 and 304 µmol photons/m**2/s). Elevated CO2 projected for the end of this century (~650 and ~950 µatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.