994 resultados para Spermatozoa ultrastructure
Resumo:
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.
Resumo:
The cuticular surfaces of Cyphophthalmi (Opiliones) were studied in detail, covering a wide range of their taxonomic diversity. Previously unknown structures are described, including a sexually dimorphic row of spines and glandular openings on leg I of Fangensis cavernarum. Scanning electron micrographs of the prosomal paired hairs and the subapical process are provided for the first time. Evidence for the multi-pored nature of the shaft of solenidia as well as the hollowed nature and absence of wall pores of sensilla chaetica are also shown for the first time using scanning electron microscopy. The prosomal paired hairs may constitute a novel autapomorphy for Cyphophthalmi, as they are absent in all studied members of the other species of Opiliones. Finally, the variation in shape of some of the structures examined may be of great taxonomic value.
Resumo:
In contrast with the abundance of anatomical studies of secretory structures on aerial vegetative organs of Asteraceae species, the information about secretory structures on thickened subterranean organs is sparse. The aim of this study was to investigate the occurrence of secretory structures on thickened and nonthickened subterranean organs of seven Asteraceae species from three tribes: Eupatorieae (Chromolaena squalida and Gyptis lanigera), Vernonieae (Chresta sphaerocephala, Lessingianthus bardanoides, L. glabratus and Orthopappus angustifolius), and Plucheeae (Pterocaulon angustifolium). The specimens were collected in areas of cerrado, from the State of Sao Paulo, Brazil. All species of the tribe Vernonieae studied exhibited endodermic cells, other than the epithelial cells of the canal, with secretory activity in the roots. In C. sphaerocephala roots, two types of endodermic cell were found, but only one had secretory activity. Secretory canals were found in the tuberous and nontuberous roots of all studied species. These data agree with the results from the literature for Asteraceae species. Here, we describe for the first time in Asteraceae the presence of secretory idioblasts in C. sphaerocephala. Secretory trichomes are present in the Orthopappus angustifolius rhizophore. Histochemical tests have shown that all types of secretory structure possess substances containing lipids. (C) 2008 The Linnean Society of London.
Resumo:
Colleters are widely occurring in eudicots showing relevant taxonomic importance in several families. Nevertheless, there are few records in monocots, restricted to only one description of these glands in Orchidaceae. The genus Oncidium is polyphyletic, currently the subject of taxonomic studies. In this context, the secretory structures can be an important diagnostic character that may help in the delineation of this group. O. flexuosum Sims presents colleters in vegetative - leaf primordium of protocorms, apical and axillary buds in the mature rhizomes - and reproductive organs - at the base of bracts, bracteoles and sepals. All the colleters observed are finger-like trichomes, composed of two uniseriated cells, where the apical one is elongated and possesses dense cytoplasm. The exsudate accumulates in a subcuticular space. causing displacement of the cuticle. Histochemical tests indicate the presence of mucilage in association with lipophilic and proteinic compounds inside the secretory cell. Secretion is abundant, hyaline and slightly viscous. The localization of the trichomes and their exsudate indicate the involvement of these colleters with the protection of meristematic regions in vegetative and reproductive organs. These results can be useful in the taxonomy of the genus Oncidium and for future studies about colleters in monocots. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Cadmium (Cd) is a toxic heavy metal, which can cause severe damage to plant development. The aim of this work was to characterize ultrastructural changes induced by Cd in miniature tomato cultivar Micro-Tom (MT) mutants and their wild-type counterpart. Leaves of diageotropica (dgt) and Never ripe (Nr) tomato hormonal mutants and wild-type MT were analysed by light, scanning and transmission electron microscopy in order to characterize the structural changes caused by the exposure to 1 mM CdCl(2). The effect of Cd on leaf ultrastructure was observed most noticeably in the chloroplasts, which exhibited changes in organelle shape and internal organization, of the thylakoid membranes and stroma. Cd caused an increase in the intercellular spaces in Nr leaves, but a decrease in the intercellular spaces in dgt leaves, as well as a decrease in the size of mesophyll cells in the mutants. Roots of the tomato hormonal mutants, when analysed by light microscopy, exhibited alterations in root diameter and disintegration of the epidermis and the external layers of the cortex. A comparative analysis has allowed the identification of specific Cd-induced ultrastructural changes in wild-type tomato, the pattern of which was not always exhibited by the mutants. (C) 2009 Elsevier B.V. All rights reserved.
Seasonal variation of peptidase activities in the reproductive tract of Crotalus durissus terrificus
Resumo:
Seasonal quantitative patterns of acid (APA), basic (APB), puromycin-sensitive (APN-PS) and puromycin-insensitive neutral (APN-PI), cystyl (CAP), dipeptidyl IV (DPPIV), type-1 pyroglutamyl (PAP-I) and prolylimino (PIP) aminopeptidases and prolyl oligopeptidase (POP) activities in soluble (SF) and solubilized membrane-bound (MF) fractions from ductus deferens, vagina and uterus were studied to evaluate their relationships with the reproductive cycle and the extensive long-term spermatozoa storage (LTSS) of the Neotropical rattlesnake Crotalus durissus terrificus. APB, PIP and POP were detected only in SF, while other peptidases were detected in SF and MF. APB, APN-PI and APN-PS were predominant in most tissues in all seasons. Peptidase activities had a common pattern of increment during the dry season (winter/autumn), which coincides with the mating period (autumn) and LTSS in the female (winter), as well as the reduction of spermatozoa motility and maintenance of fertilization capacity of spermatozoa. The high CAP activity in the soluble fraction of the vagina during winter, compared to summer (time of parturition) and spring, coincides with the relaxation of this tissue. In the soluble fraction, the low PAP-1 activity of the ductus deferens coincided with its high activity in the vagina during the winter; and the inverse occurred in summer, which is consistent with the physiological process of preserving spermatozoon viability. In conclusion, the studied peptidase activities had seasonal and tissue-specific characteristics, which suggest a relevant role in the reproductive physiology of C. d. terrificus. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
To understand the role of peptidases in seminal physiology of Crotalus durissus terrificus, activity levels of representative enzymes in semen and their sensitivities to inhibitors, cofactors, and peptide hormones were evaluated. The existence of seminal fractions and the association of peptidases with these fractions were also characterized for the first time in snakes. The prominent inhibitors of aminopeptidases (APs) were amastatin for acid, basic, and neutral; bestatin for basic; and diprotin A for dipeptidyl-IV. Cystyl and prolylimino AN were similarly susceptible to the majority of these inhibitors. The basic and neutral were characterized as metallo-peptidases, acid AP was activated by MnCl(2), and cystyl, prolyl-imino, and type I pyroglutamyl were characterized as sulphydryl-dependent APs. Angiotensin II, vasotocin, bradykinin, fertilization-promoting peptide, and TRH altered the majority of these peptidase activities; these peptides are possible substrates and/or modulators of these peptidases. Peptidase activities were found in all seminal fractions: seminal plasma (SP), prostasome-like (PR) structures, and soluble (S-) and membrane-bound fractions (MFs) of spermatozoa. The levels of activity of each peptidase varied among different seminal fractions. In SP, the higher activities were puromycin-insensitive neutral and basic APs. in PR, the higher activity was puromycin-insensitive neutral AP. In spermatozoa, the higher activity in subcellular SF was puromycin-sensitive neutral, while in MF both puromycin-sensitive and -insensitive neutral AN were equally higher than the other examined peptidases. Data suggested that these peptidases, mainly basic and neutral, have a high relevance in regulating seminal functions of C. d. terrificus.
Resumo:
Pollen transport to a receptive stigma can be facilitated through different pollinators, which submits the pollen to different selection pressures. This study aimed to associate pollen and stigma morphology with zoophily in species of the tribe Phaseoleae. Species of the genera Erythrina, Macroptilium and Mucuna with different pollinators were chosen. Pollen grains and stigmas were examined under light microscopy (anatomy), scanning electronic microscopy (surface analyses) and transmission electronic microscopy (ultrastructure). The three genera differ in terms of pollen wall ornamentation, pollen size, pollen aperture, thickness of the pollen wall, amount of pollenkitt, pollen hydration status and dominant reserves within the pollen grain, while species within each genus are very similar in most studied characteristics. Most of these features lack relationships to pollinator type, especially in Erythrina and Mucuna. Pollen reserves are discussed on a broad scale, according to the occurrence of protein in the pollen of invertebrate- or vertebrate-pollinated species. Some pollen characteristics are more associated to semi-dry stigma requirements. This apical, compact, cuticularised and secretory stigma occurs in all species investigated. We conclude that data on pollen and stigma structure should be included together with those on floral morphology and pollinator behaviour for the establishment of functional pollination classes.
Resumo:
Flower and inflorescence anatomy and morphology of Exostyles, Harleyodendron, Holocalyx, Lecointea, and Zollernia (Leguminosae, Lecointea clade) were studied. Features common to all genera but otherwise rare within the Leguminosae include: (1) the presence of phenolic compounds in the epidermal cells of the anthers and subepidermal cells of the bracteoles, sepals, petals, and ovaries (absent in Holocalyx balansae); (2) simple trichomes on the adaxial base of the bracteoles and on the surface of the calyx and ovaries; and (3) tapetum persisting until the androspores are formed. Other notable anatomical features are: (1) colleters on the adaxial bases of the bracts and bracteoles of Holocalyx balansae and Zollernia ilicifolia; (2) trichomes on the anthers of Harleyodendron unifoliolatum, Holocalyx balansae, Lecointea hatschbachii, Zollernia ilicifolia and Z. magnifica; (3) osmophores on the petals of Exostyles godoyensis; (4) asynchronous pollen development in the anthers of Holocalyx balansae and Zollernia magnifica; and (5) vascular bundles surrounded by lignified fibers in Harleyodendron unifoliolatum. These anatomical characters are discussed according to their possible phylogenetic implications.
Resumo:
The ecological and economic importance of oleoresin produced by Copaifera langsdorffii is well established. This study aims to investigate the ontogeny, anatomy and ultrastructure of the internal glands of C. langsdorffii during plant development. Samples were processed for light and electron microscopy and a specific technique was applied to impregnate endomembranes. Internal secretory glands were observed in the hypocotyl, epicotyl and eophylls of seedlings, and in the primary stem, pulvinus, petiole, rachis and leaf blade of adult plants. Canals and cavities show differential distribution. They arise from ground meristem cells, and the lumen is first formed by schizogenesis followed by later schizolysigenous development. The dense cytoplasm of epithelial cells shows mitochondria, plastids without thylakoids, polyribosomes and endoplasmic reticulum. A periplastidial reticulum was also observed. Secretion is released by eccrine, granulocrine and holocrine processes. Lipophilic and hydrophilic compounds were histochemically detected in both canals and cavities, whereas resin was detected only in canals. The presence of these substances has been associated with plants` defences against dehydration, as well as against attacks from herbivores and pathogens, from seedling stage onwards. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
The apparent absence of salt glands in marine and estuarine Crocodilia has long been a puzzle. However, we have identified glands in the tongue of Crocodylus porosus which exude a concentrated secretion of sodium chloride. The glands are similar in ultrastructure to other reptilian salt glands and undoubtedly play a major role in electrolyte regulation.
Resumo:
The corneal structure of three deep-sea species of teleosts (Gadiformes, Teleostei) from different depths (250-4000 m) and photic zones are examined at the level of the light and electron microscopes. Each species shows a similar but complex arrangement of layers with a cornea split into dermal and scleral components. The dermal cornea comprises an epithelium overlying a basement membrane and a dermal stroma with sutures and occasional keratocytes. Nezumia aequalis is the only species to possess a Bowman's layer, although it is not well-developed. The scleral cornea is separated from the dermal cornea by a mucoid layer and, in contrast to shallow-water species, is divided into three main layers; an anterior scleral stroma, a middle or iridescent layer and a posterior scleral stroma. The iridescent layer of collagen and intercalated cells or cellular processes is bounded by a layer of cells and the posterior scleral stroma overlies a Descemet's membrane and an endothelium. In the relatively shallow-water Microgadus proximus, the keratocytes of the dermal stroma, the cells of the iridescent layer and the endothelial cells all contain aligned endoplasmic reticulum, which may elicit an iridescent reflex. No alignment of the endoplasmic reticulum was found in N. aequalis or Coryphanoides (Nematonurus) armatus. The relative differences between shallow-water and deep-sea corneas are discussed in relation to the constraints of light, depth and temperature.
Resumo:
The gross morphology, histology, and ultrastructure of the thyroid gland of the koala, Phascolarctos cinereus, is described. Generally, the glands were found to contain large-diameter follicles in association with an epithelium of low height. Morphometric analysis demonstrated a high relative thyroid weight (0.3 +/- 0.2 g/kg) for koalas compared with the 0.07-0.24 g/kg typical of eutherian mammals and 0.03-0.1 g/kg found in other marsupials. The relative thyroid weight of glands (0.33 +/- 0.21 g/kg) from the coastal population (less than 28 km from the coastline) was found to be significantly higher (ANOVA: P = 0.007, significant at the 1% level) than that for glands (0.21 +/- 0.11 g/kg) of noncoastal koalas (greater than 28 km from the coastline). Follicle size was positively correlated (at the 0.1% level) with relative thyroid weight in the overall koala sample. The presence of C cells, occurring singly in the epithelial layer, was demonstrated in electron micrographs. Structural features such as low epithelial height, large follicle length and width, and large intercellular spaces in association with low concentrations of free TS (3.3 +/- 2.1 pM) and free T-3 (1.4 +/- 0.9 pM) as reported previously (Lawson et al., 1996) are consistent with an unusually low level of glandular activity in the koala thyroid even though iodine concentrations in the thyroid gland [4.7 +/- 1.6 mg/g (dry weight)] as well as leaf [0.8 +/- 0.3 mu g (dry weight)] and soil samples [3.8 mu g/g (dry weight)] from the koalas' habitat appear unremarkable. (C) 1998 Academic Press.
Resumo:
In thin sections of resin-embedded samples of glutaraldehyde- and osmium tetroxide-fixed tissue from five genera of marine sponges, Stromatospongia, Astrosclera, Jaspis, Pseudoceratina and Axinyssa, cells of a bacteria-like symbiont microorganism which exhibit a membrane-bounded nuclear region encompassing the fibrillar nucleoid have been observed within the sponge mesohyl. The nuclear region in these cells is bounded by a single bilayer membrane, so that the cell cytoplasm is divided into two distinct regions. The cell wall consists of subunits analogous to those in walls of some Archaea. Cells of the sponge symbionts observed here are similar to those of the archaeal sponge symbiont Cenarchaeum symbiosum. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The ultrastructure of the tegument and tegument-associated microorganisms of the gyliauchenid digenean Gyliauchen nahaensis is described by transmission and scanning electron microscopy. The tegument is devoid of surface spines and is characterized by a moderately folded apical membrane, abundant vesicles, basal mitochondria, a folded basal plasma membrane, and a thick basal matrix. Microorganisms form a dense biofilm on the tegument of the posterodorsal surface and the excretory papilla. At least 7 microbial morphotypes were identified, including eubacteria, spirochaetes, and nanobacteria.