958 resultados para Specific cutting energy
Resumo:
This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.
Resumo:
Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^
Resumo:
The increasing use of model-driven software development has renewed emphasis on using domain-specific models during application development. More specifically, there has been emphasis on using domain-specific modeling languages (DSMLs) to capture user-specified requirements when creating applications. The current approach to realizing these applications is to translate DSML models into source code using several model-to-model and model-to-code transformations. This approach is still dependent on the underlying source code representation and only raises the level of abstraction during development. Experience has shown that developers will many times be required to manually modify the generated source code, which can be error-prone and time consuming. ^ An alternative to the aforementioned approach involves using an interpreted domain-specific modeling language (i-DSML) whose models can be directly executed using a Domain Specific Virtual Machine (DSVM). Direct execution of i-DSML models require a semantically rich platform that reduces the gap between the application models and the underlying services required to realize the application. One layer in this platform is the domain-specific middleware that is responsible for the management and delivery of services in the specific domain. ^ In this dissertation, we investigated the problem of designing the domain-specific middleware of the DSVM to facilitate the bifurcation of the semantics of the domain and the model of execution (MoE) while supporting runtime adaptation and validation. We approached our investigation by seeking solutions to the following sub-problems: (1) How can the domain-specific knowledge (DSK) semantics be separated from the MoE for a given domain? (2) How do we define a generic model of execution (GMoE) of the middleware so that it is adaptable and realizes DSK operations to support delivery of services? (3) How do we validate the realization of DSK operations at runtime? ^ Our research into the domain-specific middleware was done using an i-DSML for the user-centric communication domain, Communication Modeling Language (CML), and for microgrid energy management domain, Microgrid Modeling Language (MGridML). We have successfully developed a methodology to separate the DSK and GMoE of the middleware of a DSVM that supports specialization for a given domain, and is able to perform adaptation and validation at runtime. ^
Resumo:
Peer reviewed
Resumo:
Purpose
The objective of our study was to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam used in fast kV switch dual-energy (DE) computed tomography (CT). The two primary focuses of the study were to first validate experimentally the dose equivalency between MOSFET and ion chamber (as a gold standard) in a fast kV switch DE environment, and secondly to estimate effective dose (ED) of DECT scans using MOSFET detectors and an anthropomorphic phantom.
Materials and Methods
A GE Discovery 750 CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. The specific aims of our study were to (1) Characterize the effective energy of the dual energy environment; (2) Estimate the f-factor for soft tissue; (3) Calibrate the MOSFET detectors using a beam with effective energy equal to the combined DE environment; (4) Validate our calibration by using MOSFET detectors and ion chamber to measure dose at the center of a CTDI body phantom; (5) Measure ED for an abdomen/pelvis scan using an anthropomorphic phantom and applying ICRP 103 tissue weighting factors; and (6) Estimate ED using AAPM Dose Length Product (DLP) method. The effective energy of the combined beam was calculated by measuring dose with an ion chamber under varying thicknesses of aluminum to determine half-value layer (HVL).
Results
The effective energy of the combined dual-energy beams was found to be 42.8 kV. After calibration, tissue dose in the center of the CTDI body phantom was measured at 1.71 ± 0.01 cGy using an ion chamber, and 1.73±0.04 and 1.69±0.09 using two separate MOSFET detectors. This result showed a -0.93% and 1.40 % difference, respectively, between ion chamber and MOSFET. ED from the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method.
Resumo:
Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.
Resumo:
Buildings are responsible for approximately 30% of EU end-use emissions (Bettgenhäuser , et al, 2009) and are at the forefront of efforts to meet emissions targets arising from their design, construction and operation. For the first time in its history, construction industry outputs must meet specific energy targets if planned reductions in greenhouse gas emissions are to be achieved through nearly zero energy buildings (nZEB) (EC, 2010) supported by on-site renewable heat and power. Where individual UK dwellings have been tested before occupation to assess whether they meet energy design criteria, the results indicate what is described as an ‘energy performance gap’, that is, energy use is almost always more than that specified. This leads to the conclusion that the performance gap is, inter alia, a function of the labour process and thus a function of social practice. Social practice theory, based on Schatzki’s model (2002), is utilised to explore the performance gap as a result of the changes demanded in the social practice of building initiated by new energy efficiency rules. The paper aims to open a discussion where failure in technical performance is addressed as a social phenomenon.
Resumo:
A network connected host is expected to generate/respond to applications and protocols specific messages. Billions of Euro of electricity is wasted to keep idle hosts powered up 24/7 just to maintain network presence. This short paper describes the design of our cooperative Network Connectivity Proxy (NCP) that can impersonate sleeping hosts and responds to packets on their behalf as they were connected and fully operational. Thus, NCP is in fact an efficient approach to reduce network energy waste.
Resumo:
This paper analyzes the impact of transceiver impairments on outage probability (OP) and throughput of decode-and-forward two-way cognitive relay (TWCR) networks, where the relay is self-powered by harvesting energy from the transmitted signals. We consider two bidirectional relaying protocols namely, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, as well as, two power transfer policies namely, dual-source (DS) energy transfer and single-fixed-source (SFS) energy transfer. Closed-form expressions for OP and throughput of the network are derived in the context of delay-limited transmission. Numerical results corroborate our analysis, thereby we can quantify the degradation of OP and throughput of TWCR networks due to transceiver hardware impairments. Under the specific parameters, our results indicate that the MABC protocol achieves asymptotically a higher throughput by 0.65 [bits/s/Hz] than the TDBC protocol, while the DS energy transfer scheme offers better performance than the SFS policy for both relaying protocols.
Resumo:
The renewable energy sources (RES) will play a vital role in the future power needs in view of the increasing demand of electrical energy and depletion of fossil fuel with its environmental impact. The main constraints of renewable energy (RE) generation are high capital investment, fluctuation in generation and requirement of vast land area. Distributed RE generation on roof top of buildings will overcome these issues to some extent. Any system will be feasible only if it is economically viable and reliable. Economic viability depends on the availability of RE and requirement of energy in specific locations. This work is directed to examine the economic viability of the system at desired location and demand.
Resumo:
Hotel chains have access to a treasure trove of “big data” on individual hotels’ monthly electricity and water consumption. Benchmarked comparisons of hotels within a specific chain create the opportunity to cost-effectively improve the environmental performance of specific hotels. This paper describes a simple approach for using such data to achieve the joint goals of reducing operating expenditure and achieving broad sustainability goals. In recent years, energy economists have used such “big data” to generate insights about the energy consumption of the residential, commercial, and industrial sectors. Lessons from these studies are directly applicable for the hotel sector. A hotel’s administrative data provide a “laboratory” for conducting random control trials to establish what works in enhancing hotel energy efficiency.
Resumo:
Several studies have been undertaken or attempted by industry and academe to address the need for lodging industry carbon benchmarking. However, these studies have focused on normalizing resource use with the goal of rating or comparing all properties based on multivariate regression according to an industry-wide set of variables, with the result that data sets for analysis were limited. This approach is backward, because practical hotel industry benchmarking must first be undertaken within a specific location and segment.1 Therefore, the CHSB study’s goal is to build a representative database providing raw benchmarks as a base for industry comparisons.2 These results are presented in the CHSB2016 Index, through which a user can obtain the range of benchmarks for energy consumption, water consumption, and greenhouse gas emissions for hotels within specific segments and geographic locations.
Resumo:
Abstract—With the proliferation of Software systems and the rise of paradigms such the Internet of Things, Cyber- Physical Systems and Smart Cities to name a few, the energy consumed by software applications is emerging as a major concern. Hence, it has become vital that software engineers have a better understanding of the energy consumed by the code they write. At software level, work so far has focused on measuring the energy consumption at function and application level. In this paper, we propose a novel approach to measure energy consumption at a feature level, cross-cutting multiple functions, classes and systems. We argue the importance of such measurement and the new insight it provides to non-traditional stakeholders such as service providers. We then demonstrate, using an experiment, how the measurement can be done with a combination of tools, namely our program slicing tool (PORBS) and energy measurement tool (Jolinar).
Resumo:
This study examined effects of 12 weeks of moderate-intensity aerobic exercise on eating behaviour, food cravings and weekly energy intake and expenditure in inactive men. Eleven healthy men (mean ± SD: age, 26 ± 5 years; body mass index, 24.6 ± 3.8 kg/m2; maximum oxygen uptake, 43.1 ± 7.4 mL/kg/min) completed the 12-week supervised exercise programme. Body composition, health markers (e.g. blood pressure), eating behaviour, food cravings and weekly energy intake and expenditure were assessed before and after the exercise intervention. There were no intervention effects on weekly free-living energy intake (p=0.326, d=-0.12) and expenditure (p=0.799, d=0.04), or uncontrolled eating and emotional eating scores (p>0.05). However, there was a trend with a medium effect size (p=0.058, d=0.68) for cognitive restraint to be greater after the exercise intervention. Total food cravings (p=0.009, d=-1.19) and specific cravings of high-fat foods (p=0.023, d=-0.90), fast-food fats (p=0.009, d=-0.71) and carbohydrates/starches (p=0.009, d=-0.56) decreased from baseline to 12 weeks. Moreover, there was a trend with a large effect size for cravings of sweets (p=0.052, d=-0.86) to be lower after the exercise intervention. In summary, 12 weeks of moderate-intensity aerobic exercise reduced food cravings and increased cognitive restraint, however, these were not accompanied by changes in other eating behaviours and weekly energy intake and expenditure. The results indicate the importance of exercising for health improvements even when reductions in body mass are modest.
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.