940 resultados para Species Richness


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of pollutants on the abundance and diversity of Collembola in urban soils. The research was carried out in three parks (Cişmigiu, Izvor and Unirea) in downtown Bucharest, where the intense car traffic accounts for 70% of the local air pollution. One site in particular (Cişmigiu park) was highly contaminated with Pb, Cd, Zn and Cu at about ten times the background levels of Pb. Collembola were sampled in 2006 (July, September, November) using the transect method: 2,475 individuals from 34 species of Collembola were collected from 210 samples of soil and litter. Numerical densities differed significantly between the studied sites.The influence of air pollutants on the springtail fauna was visible at the species richness diversity and soil pollution levels. Species richness was lowest in the most contaminated site (Cismigiu, 11 species), which presented an increase in springtails abundances, though. Some species may become resistant to pollution and occur in high numbers of individuals in polluted sites, which makes them a good bioindicator of pollutants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collembolan communities in conifer plantations (Japanese cedar, Cryptomeria japonica) and secondary deciduous broad-leaved forests of varying ages were investigated to determine the extent to which forest conversion (broad-leaved to coniferous) affects the species richness and assemblage composition of Collembola in central Japan. Density and total species richness of Collembola not differed between the broad-leaved and cedar forests except immediately after clear-cutting. The amount of forest-floor organic matter was larger in cedar forests and positively correlated with the species richness of detritus feeders. Species richness of fungal feeders and sucking feeders positively correlated with the species richness of forest-floor plants. There was difference in collembolan species composition between the forest types. The age of the forests seemed to have only small importance for the collembolan community, except during the first four years after clear-cutting. The conversion to artificial cedar stands has not reduced the abundance or species richness of collembolan communities, but has affected community composition. Differences in species composition may be related to the ground floras.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the species composition and functional groups of ants in nonagricultural (NA) and in irrigated areas (S, seasonal irrigation; P, irrigation with well water; W, irrigation with wastewater) in an arid agricultural region in central Mexico, throughout 2005 and 2006. A total of 52,358 ants belonging to 6 subfamilies, 21 genera and 39 species was collected using pitfall traps. The species best represented in all plots were: Forelius pruinosus, Pheidole obtusospinosa, Monomorium minimum and Dorymyrmex spp. NA plots recorded the highest density of ants. The highest values for diversity (H') and equitativity (J') were recorded in NA and P plots, while the lowest were recorded in W plots. Cluster analysis showed two different groups regarding species composition: NA-S and W-P. Functional groups recorded were: dominant Dolichoderinae, three species; subordinate Camponotini, five species; hot climate specialists, three species; tropical climate specialists, seven species; cold climate specialists, five species; cryptic species, one species; opportunists, six species; generalized Myrmicinae, nine species. Agricultural activity affects the structure of the ant community with epiedaphic forage, and the constant use of irrigation wastewater in conjunction with intense agricultural practices has negative effect upon species richness of epiedaphic ants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate abundance, biomass and diversity of earthworms in the southern coast region of the Mata Atlântica biodiversity hotspot. A total of 51 study sites in pastures, banana monocultures, mixed agroforestry systems, secondary forests in succession and old-growth forests near the coast of Paraná, Brazil, were evaluated. Each site was sampled once. Species richness of the earthworms was generally low and varied little between sites. At all sites except for one, the peregrine species Pontoscolex corethrurus (Glossoscolecidae) strongly dominated. Three other peregrine species, Amynthas corticis, Amynthas gracilis (Megascolecidae) and Ocnerodrilus occidentalis (Ocnerodrilidae), were frequent in moist sites. No autochthonous species were found. Abundance and biomass of earthworms varied strongly within and between sites (0-338 individuals m-2, 0-96 g m-2 fresh weight). Pastures had significantly lower abundance than all other sites. The forest sites had similar earthworm abundance and biomass, with a tendency to be higher in younger succession stages. The coastal plain region has been strongly altered by human activities. Reasons for the lack of any autochthonous species and the dominance of one peregrine species require further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One-PEP725-has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other-NECTAR-includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global environmental changes threaten ecosystems and cause significant alterations to the supply of ecosystem services that are vital for human well-being. We provide an assessment of the potential impacts of climate change on European diversity of vertebrates and their associated pest control services. We modeled the distributions of the species that provide this service using ensembles of forecasts from bioclimatic envelope models and then used their results to generate maps of potential species richness among vertebrate providers of pest control services. We assessed how potential richness of pest control providers would change according to different climate and greenhouse emissions scenarios. We found that potential richness of pest control providers was likely to face substantial reductions, especially in southern European countries that had economies highly dependent on agricultural yields. In much of central and northern Europe, where countries had their economies less dependent on agriculture, climate change was likely to benefit pest control providers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Question Can we predict where forest regrowth caused by abandonment of agricultural activities is likely to occur? Can we assess how it may conflict with grassland diversity hotspots? Location Western Swiss Alps (4003210m a.s.l.). Methods We used statistical models to predict the location of land abandonment by farmers that is followed by forest regrowth in semi-natural grasslands of the Western Swiss Alps. Six modelling methods (GAM, GBM, GLM, RF, MDA, MARS) allowing binomial distribution were tested on two successive transitions occurring between three time periods. Models were calibrated using data on land-use change occurring between 1979 and 1992 as response, and environmental, accessibility and socio-economic variables as predictors, and these were validated for their capacity to predict the changes observed from 1992 to 2004. Projected probabilities of land-use change from an ensemble forecast of the six models were combined with a model of plant species richness based on a field inventory, allowing identification of critical grassland areas for the preservation of biodiversity. Results Models calibrated over the first land-use transition period predicted the second transition with reasonable accuracy. Forest regrowth occurs where cultivation costs are high and yield potential is low, i.e. on steeper slopes and at higher elevations. Overlaying species richness with land-use change predictions, we identified priority areas for the management and conservation of biodiversity at intermediate elevations. Conclusions Combining land-use change and biodiversity projections, we propose applied management measures for targeted/identified locations to limit the loss of biodiversity that could otherwise occur through loss of open habitats. The same approach could be applied to other types of land-use changes occurring in other ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Determining the biogeographical histories of rainforests is central to our understanding of the present distribution of tropical biodiversity. Ice age fragmentation of central African rainforests strongly influenced species distributions. Elevated areas characterized by higher species richness and endemism have been postulated to be Pleistocene forest refugia. However, it is often difficult to separate the effects of history and of present-day ecological conditions on diversity patterns at the interspecific level. Intraspecific genetic variation could yield new insights into history, because refugia hypotheses predict patterns not expected on the basis of contemporary environmental dynamics. Here, we test geographically explicit hypotheses of vicariance associated with the presence of putative refugia and provide clues about their location. We intensively sampled populations of Aucoumea klaineana, a forest tree sensitive to forest fragmentation, throughout its geographical range. Characterizing variation at 10 nuclear microsatellite loci, we were able to obtain phylogeographic data of unprecedented detail for this region. Using Bayesian clustering approaches, we demonstrated the presence of four differentiated genetic units. Their distribution matched that of forest refugia postulated from patterns of species richness and endemism. Our data also show differences in diversity dynamics at leading and trailing edges of the species' shifting distribution. Our results confirm predictions based on refugia hypotheses and cannot be explained on the basis of present-day ecological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alpine flora and climate change: monitoring of three summits in Valais (Switzerland) during the 20th century Climate change might trigger an upward shift of the flora in the Swiss Alps, especially since these experienced higher change in average than observed on a global scale. Previous investigations in the canton des Grisons (Switzerland) and Austria have revealed an increase of floristic diversity on alpine summits since the beginning of the 20th century. Three summits in Valais were revisited in this study: the Gornergrat (first inventory in 1919), the Torrenthorn (about in 1885) and the Beaufort (about in 1920). Every summit was newly inventoried in 2003 in the framework of the PERMANENT.PLOT.CH project. All showed a strong increase in species richness. On the Gornergrat (3135 m), 16 species were not found anymore, but 35 new ones were observed. The number of species on this exceptionally rich summit rose from 102 to 121. In comparison, the floristic richness increased from 24 to 63 species on the Torrenthorn (2924 m) and from 16 to 48 species on the Beaufort (3048 m). As in previous studies, this increase seems likely to be associated with climate change: the new species prefer, in average, higher temperature conditions than those previously prevailing on the summits. On the Gornergrat and Beaufort, our observations reveal a development of alpine meadows, whereas species typical of rocks and raw soils are predominantly colonising the Torrenthorn. This difference might be related to the important damage caused by wanderers on the vegetation of the Torrenthorn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate impact studies have indicated ecological fingerprints of recent global warming across a wide range of habitats. Whereas these studies have shown responses from various local case studies, a coherent large-scale account on temperature-driven changes of biotic communities has been lacking. Here we use 867 vegetation samples above the treeline from 60 summit sites in all major European mountain systems to show that ongoing climate change gradually transforms mountain plant communities. We provide evidence that the more cold-adapted species decline and the more warm-adapted species increase, a process described here as thermophilisation. At the scale of individual mountains this general trend may not be apparent, but at the¦larger, continental scale we observed a significantly higher abundance of thermophilic species in 2008, compared with 2001. Thermophilisation of mountain plant communities mirrors the degree of recent warming and is more pronounced in areas where the temperature increase has been higher. In view of the projected climate change the observed transformation suggests a progressive decline of cold mountain habitats and their biota.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mushroom picking has become a widespread autumn recreational activity in the Central Pyrenees and other regions of Spain. Predictive models that relate mushroom production or fungal species richness with forest stand and site characteristics are not available. This study used mushroom production data from 24 Scots pine plots over 3 years to develop a predictive model that could facilitate forest management decisions when comparing silvicultural options in terms of mushroom production. Mixed modelling was used to model the dependence of mushroom production on stand and site factors. The results showed that productions were greatest when stand basal area was approximately 20 m2 ha-1. Increasing elevation and northern aspect increased total mushroom production as well as the production of edible and marketed mushrooms. Increasing slope decreased productions. Marketed Lactarius spp., the most important group collected in the region, showed similar relationships. The annual variation in mushroom production correlated with autumn rainfall. Mushroom species richness was highest when the total production was highest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AimUnderstanding the relative contribution of diversification rates (speciation and extinction) and dispersal in the formation of the latitudinal diversity gradient - the decrease in species richness with increasing latitude - is a main goal of biogeography. The mammalian order Carnivora, which comprises 286 species, displays the traditional latitudinal diversity gradient seen in almost all mammalian orders. Yet the processes driving high species richness in the tropics may be fundamentally different in this group from that in other mammalian groups. Indeed, a recent study suggested that in Carnivora, unlike in all other major mammalian orders, net diversification rates are not higher in the tropics than in temperate regions. Our goal was thus to understand the reasons why there are more species of Carnivora in the tropics. LocationWorld-wide. MethodsWe reconstructed the biogeographical history of Carnivora using a time-calibrated phylogeny of the clade comprising all terrestrial species and dispersal-extinction-cladogenesis models. We also analysed a fossil dataset of carnivoran genera to examine how the latitudinal distribution of Carnivora varied through time. ResultsOur biogeographical analyses suggest that Carnivora originated in the East Palaearctic (i.e. Central Asia, China) in the early Palaeogene. Multiple independent lineages dispersed to low latitudes following three main paths: toward Africa, toward India/Southeast Asia and toward South America via the Bering Strait. These dispersal events were probably associated with local extinctions at high latitudes. Fossil data corroborate a high-latitude origin of the group, followed by late dispersal events toward lower latitudes in the Neogene. Main conclusionsUnlike most other mammalian orders, which originated and diversified at low latitudes and dispersed out of the tropics', Carnivora originated at high latitudes, and subsequently dispersed southward. Our study provides an example of combining phylogenetic and fossil data to understand the generation and maintenance of global-scale geographical variations in species richness.