881 resultados para Sorghum -- Diseases and pests -- Australia
Resumo:
Sweet sorghum, a botanical variety of sorghum is a potential source of bioenergy because high sugar levels accumulate in its stalks. The objectives of this study were to explore the global diversity of sweet sorghum germplasm, and map the genomic regions that are associated with bioenergy traits. In assessing diversity, 142 sweet sorghum accessions were evaluated with three marker types (SSR, SRAP, and morphological markers) to determine the degree of relatedness among the accessions. The traits measured (anthesis date [AD], plant height [PH], biomass yield [BY], and moisture content [MC]) were all significantly different (P<0.05) among accessions. Morphological marker clustered the accessions into five groups based on PH, MC and AD. The three traits accounted for 92.5% of the variation. There were four and five groups based on SRAP and SSR data respectively classifying accessions mainly on their origin or breeding history. The observed difference between SSR and SRAP based clusters could be attributed to the difference in marker type. SSRs amplify any region of the genome whereas SRAP amplify the open reading frames and promoter regions. Comparing the three marker-type clusters, the markers complimented each other in grouping accessions and would be valuable in assisting breeders to select appropriate lines for crossing. In evaluating QTLs that are associated with bioenergy traits, 165 recombinant inbred lines (RILs) were planted at four environments in Nebraska. A genetic linkage map constructed spanned a length of 1541.3 cM, and generated 18 linkage groups that aligned to the 10 sorghum chromosomes. Fourteen QTLs (6 for brix, 3 for BY, 2 each for AD and MC, and 1 for PH) were mapped. QTLs for the traits that were significantly correlated, colocalized in two clusters on linkage group Sbi01b. Both parents contributed beneficial alleles for most of traits measured, supporting the transgressive segregation in this population. Additional work is needed on exploiting the usefulness of chromosome 1 in breeding sorghum for bioenergy.
Resumo:
The following treatment of parasites, diseases and conditions affecting mullet hopefully serves several functions. It acquaints someone involved in rearing mullets with problems he can face and topics he should investigate. We cannot go into extensive illustrative detail on every species or group, but do provide a listing of most parasites reported or known from mullet and some pertinent general information on them. Because of these enumerations, the paper should also act as a review for anyone interested in mullet parasites or the use of such parasites as indicators about a mullet's diet and migratory behavior. Unfortunately, limited space prohibits us from presenting all the references used. The paper also deals with the public health aspects of eating or selling mullet, whether the product is to be raw, cooked, salted or smoked.
Resumo:
PURPOSE. To evaluate electrically evoked phosphene thresholds (EPTs) in healthy subjects and in patients with retinal disease and to assess repeatability and possible correlations with common ophthalmologic tests. METHODS. In all, 117 individuals participated: healthy subjects (n = 20) and patients with retinitis pigmentosa (RP, n = 30), Stargardt's disease (STG, n = 14), retinal artery occlusion (RAO, n = 20), nonarteritic anterior ischemic optic neuropathy (NAION, n = 16), and primary open-angle glaucoma (POAG, n = 17). EPTs were determined at 3, 6, 9, 20, 40, 60, and 80 Hz with 5+5-ms biphasic current pulses using DTL electrodes. Subjects were examined twice (test-retest range: 1-6 weeks). An empirical model was developed to describe the current-frequency relationship of EPTs. Visual acuity, visual field (kinetic + static), electrophysiology (RP, RAO, STG: Ganzfeld-electroretinography [ERG]/multifocal-ERG; POAG: pattern-ERG; NAION: VEP), slit-lamp biomicroscopy, fundus examination, and tonometry were assessed. RESULTS. EPTs varied between disease groups (20 Hz: healthy subjects: 0.062 +/- 0.038 mA; STG: 0.102 +/- 0.097 mA; POAG: 0.127 +/- 0.09 mA; NAION: 0.244 +/- 0.126 mA; RP: 0.371 +/- 0.223 mA; RAO: 0.988 +/- 1.142 mA). In all groups EPTs were lowest at 20 Hz. In patients with retinal diseases and across all frequencies EPTs were significantly higher than those in healthy subjects, except in STG at 20 Hz (P = 0.09) and 40 Hz (P = 0.17). Test-retest difference at 20 Hz was 0.006 mA in the healthy group and 0.003-0.04 mA in disease groups. CONCLUSIONS. Considering the fast, safe, and reliable practicability of EPT testing, this test might be used more often under clinical circumstances. Determination of EPTs could be potentially useful in elucidation of the progress of ophthalmologic diseases, either in addition to standard clinical assessment or under conditions in which these standard tests cannot be used meaningfully. (ClinicalTrials.gov number, NCT00804102.) (Invest Ophthalmol Vis Sci. 2012; 53: 7440-7448) DOI:10.1167/iovs.12-9612
Resumo:
Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%-80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as "molecular domestication", by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.
Resumo:
Objectives To our knowledge, no study assessed simultaneously a variety of organ-specific autoantibodies and the prevalence of organ-specific autoimmune diseases in juvenile systemic lupus erythematosus (ISLE) and juvenile dermatomyositis (JDM). Therefore, the purpose of this study was to evaluate organ-specific autoantibodies and autoimmune diseases in JSLE and JDM patients. Methods Forty-one JSLE and 41 JDM patients were investigated for autoantibodies associated with autoimmune hepatitis, primary biliary cirrhosis, type I diabetes mellitus (TIDM, autoimmune thyroiditis (AT), autoimmune gastritis and coeliac disease (CD). Patients with positive antibodies were investigated for the respective organ-specific autoimmune diseases. Results Mean age at diagnosis was higher in ISLE compared to JDM patients (10.3 +/- 3.4 vs. 7.3 +/- 3.1 years, p=0.0001). The frequencies of organ-specific autoantibodies were similar in JSLE and JDM patients (p>0.05). Of note, a high prevalence of TIDM and AT autoantibodies was observed in both groups (20% vs. 15%, p=0.77 and 24% vs. 15%, p=0.41; respectively). Higher frequencies of ANA (93% vs. 59%, p=0.0006), anti-dsDNA (61% vs. 2%, p<0.0001), anti-Ro, anti-Sm, anti-RNP, anti-La and IgG-aCL were observed in JSLE (p<0.05). Organ-specific autoimmune diseases were evidenced only in ISLE patients (24% vs. 0%, p=0.13). Two ISLE patients had TIDM associated with Hashimoto thyroiditis and another had subclinical thyroiditis. Another JSLE patient had CD diagnosis based on iron deficiency anaemia, anti-endomysial antibody, duodenal biopsy compatible to CD and response to a gluten-free diet. Conclusions Organ-specific diseases were observed solely in ISLE patients and required specific therapy. The presence of these antibodies recommends the evaluation of organ-specific diseases and a rigorous follow-up.
Resumo:
This dissertation explores how diseases contributed to shape historical institutions and how health and diseases are still affecting modern comparative development. The overarching goal of this investigation is to identify the channels linking geographic suitability to diseases and the emergence of historical and modern insitutions, while tackling the endogenenity problems that traditionally undermine this literature. I attempt to do so by taking advantage of the vast amount of newly available historical data and of the richness of data accessible through the geographic information system (GIS). The first chapter of my thesis, 'Side Effects of Immunities: The African Slave Trade', proposes and test a novel explanation for the origins of slavery in the tropical regions of the Americas. I argue that Africans were especially attractive for employment in tropical areas because they were immune to many of the diseases that were ravaging those regions. In particular, Africans' resistance to malaria increased the profitability of slaves coming from the most malarial parts of Africa. In the second chapter of my thesis, 'Caste Systems and Technology in Pre-Modern Societies', I advance and test the hypothesis that caste systems, generally viewed as a hindrance to social mobility and development, had been comparatively advantageous at an early stage of economic development. In the third chapter, 'Malaria as Determinant of Modern Ethnolinguistic Diversity', I conjecture that in highly malarious areas the necessity to adapt and develop immunities specific to the local disease environment historically reduced mobility and increased isolation, thus leading to the formation of a higher number of different ethnolinguistic groups. In the final chapter, 'Malaria Risk and Civil Violence: A Disaggregated Analysis for Africa', I explore the relationship between malaria and violent conflicts. Using georeferenced data for Africa, the article shows that violent events are more frequent in areas where malaria risk is higher.
Resumo:
The increase in aquaculture operations worldwide has provided new opportunities for the transmission of aquatic viruses. The occurrence of viral diseases remains a significant limiting factor in aquaculture production and for the sustainability. The ability to identify quickly the presence/absence of a pathogenic organism in fish would have significant advantages for the aquaculture systems. Several molecular methods have found successful application in fish pathology both for confirmatory diagnosis of overt diseases and for detection of asymptomatic infections. However, a lot of different variants occur among fish host species and virus strains and consequently specific methods need to be developed and optimized for each pathogen and often also for each host species. The first chapter of this PhD thesis presents a complete description of the major viruses that infect fish and provides a relevant information regarding the most common methods and emerging technologies for the molecular diagnosis of viral diseases of fish. The development and application of a real time PCR assay for the detection and quantification of lymphocystivirus was described in the second chapter. It showed to be highly sensitive, specific, reproducible and versatile for the detection and quantitation of lymphocystivirus. The use of this technique can find multiple application such as asymptomatic carrier detection or pathogenesis studies of different LCDV strains. The third chapter, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN) and sleeping disease (SD) in a single assay. This method was able to efficiently detect the viral RNA in tissue samples, showing the presence of single infections and co-infections in rainbow trout samples. The mRT-PCR method was revealed to be an accurate and fast method to support traditional diagnostic techniques in the diagnosis of major viral diseases of rainbow trout.
Resumo:
BACKGROUND: Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases. METHODS: sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. In vitro studies were performed to investigate which factors regulate sCD14 release and mCD14 expression. RESULTS: sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. In vitro, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition. CONCLUSIONS: This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.
Resumo:
Free radicals play an important role in many physiological processes that occur in the human body such as cellular defense responses to infectious agents and a variety of cellular signaling pathways. While at low concentrations free radicals are involved in many significant metabolic reactions, high levels of free radicals can have deleterious effects on biomolecules like proteins, lipids, and DNA. Many physiological disorders such as diabetes, ageing, neurodegenerative diseases, and ischemia-reperfusion (I/R) injury are associated with oxidative stress.1 In particular, the deleterious effects caused by I/R injury developed during organ transplantation, cardiac infarct, and stroke have become the main cause of death in the United States and Europe.1,2 In this context, we synthesized and characterized a series of novel indole-amino acid conjugates as potential antioxidants for I/R injury. The synthesis of indole-phenol conjugate compounds is also discussed. Phenolic derivatives such as caffeic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), resveratrol, and its analogues are known for their significant antioxidative properties. A series of resveratrol analogues have been designed and synthesized as potential antioxidants. The radical scavenging mechanisms for potential antioxidants and assays for the in vitro evaluation of antioxidant activities are also discussed.
Resumo:
REASONS FOR PERFORMING STUDY: Neonatal diseases have been grouped and analysed but up-to-date statistically significant information about the incidence and prevalence of diseases in foals is limited. Since the 1950s it has been a common management practice to administer a 3 day course of antimicrobial drugs to neonatal foals. This was shown to significantly reduce the incidence of infections (Platt 1977). Since then management practices have improved and it is widely believed that prophylactic antimicrobial drugs are no longer necessary in foal rearing. OBJECTIVES: To determine the 30 day incidences or prevalences (depending on case definition) of various diseases and conditions in the neonatal foal and ascertain the influence of a prophylactic 3 day treatment on the frequency of infections. METHODS: The population consisted of Thoroughbred foals born on stud farms in the Newmarket (UK) area in 2005 (n = 1031). Depending on the stud farm's practice in the use of prophylactic antimicrobial drugs, 2 groups of newborn foals (treated and untreated) were identified and followed for 30 days. RESULTS: The 30 day incidences of infectious diseases under study were between 0.2% (osteomyelitis) and 5.85% (systemic disease with diarrhoea). The overall incidence for 'total infectious diseases' was 8.27%. The most commonly observed noninfectious condition was limb deformities (12.11% of all foals). There was no significant difference in the incidence of infectious diseases between the 2 groups. CONCLUSION: Infectious diseases are still an important problem in neonatal foals requiring further investigation as to which factors other than antimicrobial prophylaxis are relevant for disease prevention. POTENTIAL RELEVANCE: The results provide an up-to-date overview about the frequencies of various neonatal foal diseases. They do not support the traditional prophylactic use of antimicrobials to prevent infectious diseases in healthy newborn foals. However, it should be noted that this study was not a randomised controlled trial and therefore does not provide the strongest possible evidence for this conclusion.
Resumo:
Extracellular DNA traps are part of the innate immune response and are seen with many infectious, allergic, and autoimmune diseases. They can be generated by several different leukocytes, including neutrophils, eosinophils, and monocytes, as well as mast cells. Here, we review the composition of these extracellular DNA-containing structures as well as potential mechanisms for their production and function. In general, extracellular DNA traps have been described as binding to and killing pathogens, particularly bacteria, fungi, but also parasites. On the other hand, it is possible that DNA traps contribute to immunopathology in chronic inflammatory diseases, such as bronchial asthma. In addition, it has been demonstrated that they can initiate and/or potentiate autoimmune diseases. Extracellular DNA traps represent a frequently observed phenomenon in inflammatory diseases, and they appear to participate in the cross-talk between different immune cells. These new insights into the pathogenesis of inflammatory diseases may open new avenues for targeted therapies.
Resumo:
Australia is unique as a populated continent in that canine rabies is exotic, with only one likely incursion in 1867. This is despite the presence of a widespread free-ranging dog population, which includes the naturalized dingo, feral domestic dogs and dingo-dog cross-breeds. To Australia's immediate north, rabies has recently spread within the Indonesian archipelago, with outbreaks occurring in historically free islands to the east including Bali, Flores, Ambon and the Tanimbar Islands. Australia depends on strict quarantine protocols to prevent importation of a rabid animal, but the risk of illegal animal movements by fishing and recreational vessels circumventing quarantine remains. Predicting where rabies will enter Australia is important, but understanding dog population dynamics and interactions, including contact rates in and around human populations, is essential for rabies preparedness. The interactions among and between Australia's large populations of wild, free-roaming and restrained domestic dogs require quantification for rabies incursions to be detected and controlled. The imminent risk of rabies breaching Australian borders makes the development of disease spread models that will assist in the deployment of cost-effective surveillance, improve preventive strategies and guide disease management protocols vitally important. Here, we critically review Australia's preparedness for rabies, discuss prevailing assumptions and models, identify knowledge deficits in free-roaming dog ecology relating to rabies maintenance and speculate on the likely consequences of endemic rabies for Australia.
Resumo:
The objectives of this study were to compare female child-care providers with female university workers and with mothers of children in child-care centers for: (1) frequency of illness and work loss days due to infectious diseases, (2) prevalence of antibodies against measles, rubella, mumps, hepatitis B, hepatitis A, chickenpox and cytomegalovirus (CMV), and (3) status regarding health insurance and job benefits.^ Subjects from twenty child-care centers and twenty randomly selected departments of a university in Houston, Texas were studied in a cross-sectional fashion.^ A cluster sample of 281 female child-care providers from randomly selected child-care centers, a cluster sample of 286 university workers from randomly selected departments and a systematic sample of 198 mothers of children from randomly selected child-care centers.^ Main outcome measures were: (1) self-reported frequency of infectious diseases and number of work-days lost due to infectious diseases; (2) presence of antibodies in blood; and (3) self-reported health insurance and job benefits.^ In comparison to university workers, child-care providers reported a higher prevalence of infectious diseases in the past 30 days; lost three times more work-days due to infectious diseases; and were more likely to have anti-core antibodies against hepatitis B (odds ratio = 3.16 95% CI 1.27-7.85) and rubella (OR 1.88, 95% CI 1.02-3.45). Child-care providers had less health insurance and job-related benefits than mothers of children attending child-care centers.^ Regulations designed to reduce transmission of vaccine and non-vaccine preventable diseases in child-care centers should be strictly enforced. In addition policies to improve health insurance and job benefits of child-care providers are urgently needed. ^
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
OGOLOD is a Linked Open Data dataset derived from different biomedical resources by an automated pipeline, using a tailored ontology as a scaffold. The key contribution of OGOLOD is that it links, in new RDF triples, genetic human diseases and orthologous genes, paving the way for a more efficient translational biomedical research exploiting the Linked Open Data cloud.