972 resultados para Soil temperature.
Resumo:
For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method is presented which allows thermal inertia (the soil heat capacity times the square root of the soil thermal diffusivity, C(h)rootD(h)), to be estimated remotely from micrometeorological observations. The method uses the drop in surface temperature, T-s, between sunset and sunrise, and the average night-time net radiation during that period, for clear, still nights. A Fourier series analysis was applied to analyse the time series of T-s . The Fourier series constants, together with the remote estimate of thermal inertia, were used in an analytical expression to calculate diurnal estimates of the soil heat flux, G. These remote estimates of C(h)rootD(h) and G compared well with values derived from in situ sensors. The remote and in situ estimates of C(h)rootD(h) both correlated well with topsoil moisture content. This method potentially allows area-average estimates of thermal inertia and soil heat flux to be derived from remote sensing, e.g. METEOSAT Second Generation, where the area is determined by the sensor's height and viewing angle. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
It has been observed in the present study that when spores of Trichoderma harzianum (Th-2) isolate were applied in the sandy clay loam soil and continuously incubated for 4 months at 25 degrees C and 35 degrees C and at three water potentials, -0.03 MPa, -0.3 MPa and <-50 MPa, it has resulted in significantly reduced (P<0.05), growth of Fusarium oxysporum ciceri (Foc) on branches of chickpea plant. The pathogen population was greatly reduced in the moist soil (43 MPa) when compared with the wet soil (-0.03 MPa) at both temperatures which was indicated by greater colonization and growth of T. harzanum-2 on the branch pieces of chickpea plants. The pathogen was completely eradicated from the chickpea branch pieces, after 6 months at 35 degrees C in the moist soil. In air-dry soil (<-50 MPa), Foc survived in 100% of the branch pieces even after 6 months at both temperatures. When chickpea plant branch pieces having pathogen was sprayed with Th-2 antagonistic isolates of Trichoderma spp., the Th-2 isolate killed the pathogen up to minimum level (10-12%) after 5 months at 35 degrees C in the sandy clay loam soil. It can be concluded that in chickpea growing rainfed areas of Pakistan having sandy clay loam soil, Foc can be controlled by using specific Trichoderma spp., especially in the summer season as after harvest of the crop the temperature increased up and there is rainfall during this period which makes the soil moist. This practice will be able to reduce the inoculum of Foc during this hot period as field remain fallow till next crop is sown in most of the chickpea growing rainfed areas of Pakistan.
Resumo:
Oviposition behaviour is important when modelling the population dynamics of many invertebrates. The numbers of eggs laid are frequently used to describe fecundity, but this measure may differ significantly from realised fecundity. Oviposition has been shown to be important when describing the dynamics of slug populations, which are important agricultural pests. The numbers of eggs laid by Deroceras reticulatum and their viability were measured across a range of 16 temperature (4, 10, 15 and 23 degrees C) by moisture (33%, 42%, 53% and 58% by dry soil weight) experimental combinations. A fitted quadratic response surface model was used to estimate how D. reticulatum adjusted its egg laying to the surrounding temperature and moisture conditions, with most eggs being laid at a combination of 53% soil moisture and 18 degrees C. The number and proportion of viable eggs also covaried with temperature and moisture, suggesting that D. reticulatum may alter their investment in reproduction to maximise their fitness. We have shown that the number of viable eggs differs from the total number of eggs laid by D. reticulatum. Changes in egg viability with temperature and moisture may also be seen in other species and should be considered when modelling populations of egg-laying invertebrates.
Resumo:
Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The production and release of dissolved organic carbon (DOC) from peat soils is thought to be sensitive to changes in climate, specifically changes in temperature and rainfall. However, little is known about the actual rates of net DOC production in response to temperature and water table draw-down, particularly in comparison to carbon dioxide (CO2) fluxes. To explore these relationships, we carried out a laboratory experiment on intact peat soil cores under controlled temperature and water table conditions to determine the impact and interaction of each of these climatic factors on net DOC production. We found a significant interaction (P < 0.001) between temperature, water table draw-down and net DOC production across the whole soil core (0 to −55 cm depth). This corresponded to an increase in the Q10 (i.e. rise in the rate of net DOC production over a 10 °C range) from 1.84 under high water tables and anaerobic conditions to 3.53 under water table draw-down and aerobic conditions between −10 and − 40 cm depth. However, increases in net DOC production were only seen after water tables recovered to the surface as secondary changes in soil water chemistry driven by sulphur redox reactions decreased DOC solubility, and therefore DOC concentrations, during periods of water table draw-down. Furthermore, net microbial consumption of DOC was also apparent at − 1 cm depth and was an additional cause of declining DOC concentrations during dry periods. Therefore, although increased temperature and decreased rainfall could have a significant effect on net DOC release from peatlands, these climatic effects could be masked by other factors controlling the biological consumption of DOC in addition to soil water chemistry and DOC solubility. These findings highlight both the sensitivity of DOC release from ombrotrophic peat to episodic changes in water table draw-down, and the need to disentangle complex and interacting controls on DOC dynamics to fully understand the impact of environmental change on this system.
Resumo:
The magnitude and direction of the coupled feedbacks between the biotic and abiotic components of the terrestrial carbon cycle is a major source of uncertainty in coupled climate–carbon-cycle models1, 2, 3. Materially closed, energetically open biological systems continuously and simultaneously allow the two-way feedback loop between the biotic and abiotic components to take place4, 5, 6, 7, but so far have not been used to their full potential in ecological research, owing to the challenge of achieving sustainable model systems6, 7. We show that using materially closed soil–vegetation–atmosphere systems with pro rata carbon amounts for the main terrestrial carbon pools enables the establishment of conditions that balance plant carbon assimilation, and autotrophic and heterotrophic respiration fluxes over periods suitable to investigate short-term biotic carbon feedbacks. Using this approach, we tested an alternative way of assessing the impact of increased CO2 and temperature on biotic carbon feedbacks. The results show that without nutrient and water limitations, the short-term biotic responses could potentially buffer a temperature increase of 2.3 °C without significant positive feedbacks to atmospheric CO2. We argue that such closed-system research represents an important test-bed platform for model validation and parameterization of plant and soil biotic responses to environmental changes.
Resumo:
This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.
Resumo:
There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
Enhanced understanding of soil disturbance effects on weed seedling recruitment will help guide improved management approaches. Field experiments were conducted at 16 site-years at 10 research farms across Europe and North America to (i) quantify superficial soil disturbance (SSD) effects on Chenopodium album emergence and (ii) clarify adaptive emergence behaviour in frequently disturbed environments. Each site-year contained factorial combinations of two seed populations (local and common, with the common population studied at all site-years) and six SSD timings [0, 50, 100, 150, 200 day-degrees (d°C, base temperature 3°C) after first emergence from undisturbed soil]. Analytical units in this study were emergence flushes. Flush magnitudes (maximum weekly emergence per count flush) and flush frequencies (flushes year 1) were compared between disturbed and undisturbed seedbanks. One year after burial, SSD promoted seedling emergence relative to undisturbed seedbanks by increasing flush magnitude rather than increasing flush frequency. Two years after burial, SSD promoted emergence through increased flush magnitude and flush frequency. The promotional effects of SSD on emergence were strongest within 500 d°C following SSD; however, low levels of SSDinduced emergence were detected as late as 3000 d°C following SSD. Accordingly, stale seedbed practices that eliminate weed seedlings should occur within 500 d°C of disturbance, because few seedlings emerge after this time. However, implementation of stale seedbed practices will probably cause slight increases in weed population densities throughout the year. Compared with the common population, local populations exhibited reduced variance in total emergence measured within sites and across SSD treatments, suggesting that C. album adaptation to local pedo-climatic conditions involves increased consistency in SSD-induced emergence.
Resumo:
The nature of the climate–carbon cycle feedback depends critically on the response of soil carbon to climate, including changes in moisture. However, soil moisture–carbon feedback responses have not been investigated thoroughly. Uncertainty in the response of soil carbon to soil moisture changes could arise from uncertainty in the relationship between soil moisture and heterotrophic respiration. We used twelve soil moisture–respiration functions (SMRFs) with a soil carbon model (RothC) and data from a coupled climate–carbon cycle general circulation model to investigate the impact of direct heterotrophic respiration dependence on soil moisture on the climate carbon cycle feedback. Global changes in soil moisture acted to oppose temperaturedriven decreases in soil carbon and hence tended to increase soil carbon storage. We found considerable uncertainty in soil carbon changes due to the response of soil respiration to soil moisture. The use of different SMRFs resulted in both large losses and small gains in future global soil carbon stocks, whether considering all climate forcings or only moisture changes. Regionally, the greatest range in soil carbon changes across SMRFs was found where the largest soil carbon changes occurred. Further research is needed to constrain the soil moisture–respiration relationship and thus reduce uncertainty in climate–carbon cycle feedbacks. There may also be considerable uncertainty in the regional responses of soil carbon to soil moisture changes since climate model predictions of regional soil moisture changes are less coherent than temperature changes.
Resumo:
Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.