687 resultados para Skeletal-muscle Mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that local muscle tissue hypoxia is an important consequence and possibly a relevant adaptive signal of endurance exercise training in humans. It has been reasoned that it might be advantageous to increase this exercise stimulus by working in hypoxia. However, as long-term exposure to severe hypoxia has been shown to be detrimental to muscle tissue, experimental protocols were developed that expose subjects to hypoxia only for the duration of the exercise session and allow recovery in normoxia (live low-train high or hypoxic training). This overview reports data from 27 controlled studies using some implementation of hypoxic training paradigms. Hypoxia exposure varied between 2300 and 5700 m and training duration ranged from 10 days to 8 weeks. A similar number of studies was carried out on untrained and on trained subjects. Muscle structural, biochemical and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available data on global estimates of performance capacity such as maximal oxygen uptake (VO2max) and maximal power output (Pmax), hypoxia as a supplement to training is not consistently found to be of advantage for performance at sea level. There is some evidence mainly from studies on untrained subjects for an advantage of hypoxic training for performance at altitude. Live low-train high may be considered when altitude acclimatization is not an option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle force evaluation is difficult to implement in a clinical setting. Muscle force is typically assessed through either manual muscle testing, isokinetic/isometric dynamometry, or electromyography (EMG). Manual muscle testing is a subjective evaluation of a patient’s ability to move voluntarily against gravity and to resist force applied by an examiner. Muscle testing using dynamometers adds accuracy by quantifying functional mechanical output of a limb. However, like manual muscle testing, dynamometry only provides estimates of the joint moment. EMG quantifies neuromuscular activation signals of individual muscles, and is used to infer muscle function. Despite the abundance of work performed to determine the degree to which EMG signals and muscle forces are related, the basic problem remains that EMG cannot provide a quantitative measurement of muscle force. Intramuscular pressure (IMP), the pressure applied by muscle fibers on interstitial fluid, has been considered as a correlate for muscle force. Numerous studies have shown that an approximately linear relationship exists between IMP and muscle force. A microsensor has recently been developed that is accurate, biocompatible, and appropriately sized for clinical use. While muscle force and pressure have been shown to be correlates, IMP has been shown to be non-uniform within the muscle. As it would not be practicable to experimentally evaluate how IMP is distributed, computational modeling may provide the means to fully evaluate IMP generation in muscles of various shapes and operating conditions. The work presented in this dissertation focuses on the development and validation of computational models of passive skeletal muscle and the evaluation of their performance for prediction of IMP. A transversly isotropic, hyperelastic, and nearly incompressible model will be evaluated along with a poroelastic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: A high-fructose diet (HFrD) may play a role in the obesity and metabolic disorders epidemic. In rodents, HFrD leads to insulin resistance and ectopic lipid deposition. In healthy humans, a four-week HFrD alters lipid homoeostasis, but does not affect insulin sensitivity or intramyocellular lipids (IMCL). The aim of this study was to investigate whether fructose may induce early molecular changes in skeletal muscle prior to the development of whole-body insulin resistance. METHODS: Muscle biopsies were taken from five healthy men who had participated in a previous four-week HFrD study, during which insulin sensitivity (hyperinsulinaemic euglycaemic clamp), and intrahepatocellular lipids and IMCL were assessed before and after HFrD. The mRNA concentrations of 16 genes involved in lipid and carbohydrate metabolism were quantified before and after HFrD by real-time quantitative PCR. RESULTS: HFrD significantly (P<0.05) increased stearoyl-CoA desaturase-1 (SCD-1) (+50%). Glucose transporter-4 (GLUT-4) decreased by 27% and acetyl-CoA carboxylase-2 decreased by 48%. A trend toward decreased peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was observed (-26%, P=0.06). All other genes showed no significant changes. CONCLUSION: HFrD led to alterations of SCD-1, GLUT-4 and PGC-1alpha, which may be early markers of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently demonstrated that in vivo insulin resistance is not retained in cultured skeletal muscle cells. In the present study, we tested the hypothesis that treating cultured skeletal muscle cells with fatty acids has an effect on insulin action which differs between insulin-sensitive and insulin-resistant subjects. Insulin effects were examined in myotubes from 8 normoglycemic non-obese insulin-resistant and 8 carefully matched insulin-sensitive subjects after preincubation with or without palmitate, linoleate, and 2-bromo-palmitate. Insulin-stimulated glycogen synthesis decreased by 27 +/- 5 % after palmitate treatment in myotubes from insulin-resistant, but not from insulin-sensitive subjects (1.50 +/- 0.08-fold over basal vs. 1.81 +/- 0.09-fold, p = 0.042). Despite this observation, we did not find any impairment in the PI 3-kinase/PKB/GSK-3 pathway. Furthermore, insulin action was not affected by linoleate and 2-bromo-palmitate. In conclusion, our data provide preliminary evidence that insulin resistance of skeletal muscle does not necessarily involve primary defects in insulin action, but could represent susceptibility to the desensitizing effect of fatty acids and possibly other environmental or adipose tissue-derived factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate mechanisms by which angiotensin converting enzyme (ACE)-inhibition increases insulin sensitivity, spontaneously hypertensive (SH) rats were treated with or without ramipril (1 mg/kg per day) for 12 weeks. Insulin binding and protein levels of insulin receptor substrate-1 (IRS-1), p85-subunit of phosphatidylinositol 3'-kinase (p85) and Src homology 2 domain-containing phosphatase-2 (SHP2) were then determined in hindlimb muscle and liver. Additionally, protein tyrosine phosphatase (PTPase) activities towards immobilized phosphorylated insulin receptor or phosphorylated IRS-1 of membrane (MF) and cytosolic fractions (CF) of these tissues were measured. Ramipril treatment increased IRS-1-protein content in muscle by 31+/-9% (P<0.05). No effects were observed on IRS-1 content in liver or on insulin binding or protein expression of p85 or SHP2 in both tissues. Ramipril treatment also increased dephosphorylation of insulin receptor by muscle CF (22.0+/-1.0%/60 min compared to 16.8+/-1.5%/60 min; P<0.05), and of IRS-1 by liver MF (37.2+/-1.7%/7.5 min compared to 33.8+/-1.7%/7.5 min; P<0.05) and CF (36.8+/-1.0%/7.5 min compared to 33.2+/-1.0%/7.5 min; P<0.05). We conclude that the observed effects of ACE-inhibition by ramipril on the protein expression of IRS-1 and on PTPase activity might contribute to its effect on insulin sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Many patients taking statins often complain of muscle pain and weakness. The extent to which muscle pain reflects muscle injury is unknown. METHODS: We obtained biopsy samples from the vastus lateralis muscle of 83 patients. Of the 44 patients with clinically diagnosed statin-associated myopathy, 29 were currently taking a statin, and 15 had discontinued statin therapy before the biopsy (minimal duration of discontinuation 3 weeks). We also included 19 patients who were taking statins and had no myopathy, and 20 patients who had never taken statins and had no myopathy. We classified the muscles as injured if 2% or more of the muscle fibres in a biopsy sample showed damage. Using reverse transcriptase polymerase chain reaction, we evaluated the expression levels of candidate genes potentially related to myocyte injury. RESULTS: Muscle injury was observed in 25 (of 44) patients with myopathy and in 1 patient without myopathy. Only 1 patient with structural injury had a circulating level of creatine phosphokinase that was elevated more than 1950 U/L (10x the upper limit of normal). Expression of ryanodine receptor 3 was significantly upregulated in patients with biopsy evidence of structural damage (1.7, standard error of the mean 0.3). INTERPRETATION: Persistent myopathy in patients taking statins reflects structural muscle damage. A lack of elevated levels of circulating creatine phosphokinase does not rule out structural muscle injury. Upregulation of the expression of ryanodine receptor 3 is suggestive of an intracellular calcium leak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle complaints are a common consequence of cholesterol-lowering therapy. Transverse tubular (T-tubular) vacuolations occur in patients having statin-associated myopathy and, to a lesser extent, in statin-treated patients without myopathy. We have investigated quantitative changes in T-tubular morphology and looked for early indicators of T-tubular membrane repair in skeletal muscle biopsy samples from patients receiving cholesterol-lowering therapy who do not have myopathic side effects. Gene expression and protein levels of incipient membrane repair proteins were monitored in patients who tolerated statin treatment without myopathy and in statin-naive subjects. In addition, morphometry of the T-tubular system was performed. Only the gene expression for annexin A1 was up-regulated, whereas the expression of other repair genes remained unchanged. However, annexin A1 and dysferlin protein levels were significantly increased. In statin-treated patients, the volume fraction of the T-tubular system was significantly increased, but the volume fraction of the sarcoplasmic reticulum remained unchanged. A complex surface structure in combination with high mechanical loads makes skeletal muscle plasma membranes susceptible to injury. Ca(2+)-dependent membrane repair proteins such as dysferlin and annexin A1 are deployed at T-tubular sites. The up-regulation of annexin A1 gene expression and protein points to this protein as a biomarker for T-tubular repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS Ectopic lipids are fuel stores in non-adipose tissues (skeletal muscle [intramyocellular lipids; IMCL], liver [intrahepatocellular lipids; IHCL] and heart [intracardiomyocellular lipids; ICCL]). IMCL can be depleted by physical activity. Preliminary data suggest that aerobic exercise increases IHCL. Data on exercise-induced changes on ICCL is scarce. Increased IMCL and IHCL have been related to insulin resistance in skeletal muscles and liver, whereas this has not been documented in the heart. The aim of this study was to assess the acute effect of aerobic exercise on the flexibility of IMCL, IHCL and ICCL in insulin-sensitive participants in relation to fat availability, insulin sensitivity and exercise capacity. METHODS Healthy physically active men were included. [Formula: see text] was assessed by spiroergometry and insulin sensitivity was calculated using the HOMA index. Visceral and subcutaneous fat were separately quantified by MRI. Following a standardised dietary fat load over 3 days, IMCL, IHCL and ICCL were measured using MR spectroscopy before and after a 2 h exercise session at 50-60% of [Formula: see text]. Metabolites were measured during exercise. RESULTS Ten men (age 28.9 ± 6.4 years, mean ± SD; [Formula: see text] 56.3 ± 6.4 ml kg(-1) min(-1); BMI 22.75 ± 1.4 kg/m(2)) were recruited. A 2 h exercise session resulted in a significant decrease in IMCL (-17 ± 22%, p = 0.008) and ICCL (-17 ± 14%, p = 0.002) and increase in IHCL (42 ± 29%, p = 0.004). No significant correlations were found between the relative changes in ectopic lipids, fat availability, insulin sensitivity, exercise capacity or changes of metabolites during exercise. CONCLUSIONS/INTERPRETATION In this group, physical exercise decreased ICCL and IMCL but increased IHCL. Fat availability, insulin sensitivity, exercise capacity and metabolites during exercise are not the only factors affecting ectopic lipids during exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of myogenic regulatory factors (MRFs) during adult life is not well understood. The requirement of one of these MRFs, myogenin (Myog), during embryonic muscle development suggests an equally important role in adult muscle. In this study, we have determined the function of myogenin during adult life using a conditional allele of Myog. In contrast to embryonic development, myogenin is not required for adult viability, and Myog-deleted mice exhibited no remarkable phenotypic changes during sedentary life. Remarkably, sedentary Myog-deleted mice demonstrated enhanced exercise endurance during involuntary treadmill running. Altered blood glucose and lactate levels in sedentary Myog-deleted mice after exhaustion suggest an enhanced glycolytic metabolism and an ability to excessively deplete muscle and liver glycogen stores. Traditional changes associated with enhanced exercise endurance, such as fiber type switching, and increased oxidative potential, were not detected in sedentary Myog-deleted mice. After long-term voluntary exercise, trained Myog-deleted mice demonstrated an enhanced adaptive response to exercise. Trained Myog-deleted mice exhibited superior exercise endurance associated with an increased proportion of slow-twitch fibers and increased oxidative capacity. In a parallel experiment, dystrophin-deficient young adult mice showed attenuated muscle fatigue following the deletion of Myog. These results demonstrate a novel and unexpected role for myogenin in modulating skeletal muscle metabolism.