947 resultados para Single magnetic atom
Resumo:
An effective frozen core approximation has been developed and applied to the calculation of energy levels and ionization energies of the beryllium atom in magnetic field strengths up to 2.35 x 10(5) T. Systematic improvement over the existing results for the beryllium ground and low-lying states has been accomplished by taking into account most of the correlation effects in the four-electron system. To our knowledge, this is the first calculation of the electronic properties of the beryllium atom in a strong magnetic field carried out using a configuration interaction approximation and thus allowing a treatment beyond that of Hartree-Fock. Differing roles played by strong magnetic fields in intrashell correlation within different states are observed. In addition, possible ways to gain further improvement in the energies of the states of interest are proposed and discussed briefly.
Resumo:
We discuss the application of quantitatively accurate computational methods to the study of laser-driven two-electron atoms in short intense laser pulses. The fundamental importance of such calculations to the subject area is emphasized. Calculations of single- and double-electron ionization rates at 390 nm are presented. (C) 2001 Optical Society of America.
Resumo:
Evidence for scattering closed orbits for the Rydberg electron of the singly excited helium atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength has been found through a quantum calculation of the photo-excitation spectrum. A particular 3D scattering orbit in a mixed regular and chaotic region has been investigated and the hydrogenic 3D closed orbits composing it identified. To the best of our knowledge, this letter reports the first quantum calculation of the scaled spectrum of a non- hydrogenic atom in crossed fields.
Resumo:
The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits, Excellent agreement has been found with all peaks assigned.
Resumo:
In a recent Letter to the Editor (J Rao, D Delande and K T Taylor 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L391-9) we made a brief first report of our quantal and classical calculations for the hydrogen atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength. A principal point of that communication was our statement that each and every peak in the Fourier transform of the scaled quantum photo-excitation spectrum for scaled energy value epsilon = -0.586 538 871028 43 and scaled electric value (f) over tilde = 0.068 537 846 207 618 71 could be identified with a scaled action value of a found and mapped-out closed orbit up to a scaled action of 20. In this follow-up paper, besides presenting full details of our quantum and classical methods, we set out the scaled action values of all 317 closed orbits involved, together with the geometries of many.
Resumo:
Single- and multiphoton detachment rates have been calculated for K- using the R-matrix Floquet approach. Single-photon detachment rates, obtained at a laser field peak intensity of 10(9) W cm(-2), are discussed and compared with other theoretical work. Two-photon detachment rates at the same intensity have also been obtained, and similarities with results from earlier calculations for Li- and Na- are discussed. Three-photon rates are also presented at this laser intensity, and are compared and contrasted with those arising in the single-photon case, since both involve resonance structure with P-1(o) symmetry. The influence of resonances such as the 5s(2) S-1(e) doubly excited state and excitations of the residual atom are also considered.
Resumo:
It is shown that the Mel'nikov-Meshkov formalism for bridging the very low damping (VLD) and intermediate-to-high damping (IHD) Kramers escape rates as a function of the dissipation parameter for mechanical particles may be extended to the rotational Brownian motion of magnetic dipole moments of single-domain ferromagnetic particles in nonaxially symmetric potentials of the magnetocrystalline anisotropy so that both regimes of damping, occur. The procedure is illustrated by considering the particular nonaxially symmetric problem of superparamagnetic particles possessing uniaxial anisotropy subject to an external uniform field applied at an angle to the easy axis of magnetization. Here the Mel'nikov-Meshkov treatment is found to be in good agreement with an exact calculation of the smallest eigenvalue of Brown's Fokker-Planck equation, provided the external field is large enough to ensure significant departure from axial symmetry, so that the VLD and IHD formulas for escape rates of magnetic dipoles for nonaxially symmetric potentials are valid.
Resumo:
A FORTRAN 90 program is presented which calculates the total cross sections, and the electron energy spectra of the singly and doubly differential cross sections for the single target ionization of neutral atoms ranging from hydrogen up to and including argon. The code is applicable for the case of both high and low Z projectile impact in fast ion-atom collisions. The theoretical models provided for the program user are based on two quantum mechanical approximations which have proved to be very successful in the study of ionization in ion-atom collisions. These are the continuum-distorted-wave (CDW) and continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximations. The codes presented here extend previously published. codes for single ionization of. target hydrogen [Crothers and McCartney, Comput. Phys. Commun. 72 (1992) 288], target helium [Nesbitt, O'Rourke and Crothers, Comput. Phys. Commun. 114 (1998) 385] and target atoms ranging from lithium to neon [O'Rourke, McSherry and Crothers, Comput. Phys. Commun. 131 (2000) 129]. Cross sections for all of these target atoms may be obtained as limiting cases from the present code. Title of program: ARGON Catalogue identifier: ADSE Program summary URL: http://cpc.cs.qub.ac.uk/cpc/summaries/ADSE Program obtainable from: CPC Program Library Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it is operable: Computers: Four by 200 MHz Pro Pentium Linux server, DEC Alpha 21164; Four by 400 MHz Pentium 2 Xeon 450 Linux server, IBM SP2 and SUN Enterprise 3500 Installations: Queen's University, Belfast Operating systems under which the program has been tested: Red-hat Linux 5.2, Digital UNIX Version 4.0d, AIX, Solaris SunOS 5.7 Compilers: PGI workstations, DEC CAMPUS Programming language used: FORTRAN 90 with MPI directives No. of bits in a word: 64, except on Linux servers 32 Number of processors used: any number Has the code been vectorized or parallelized? Parallelized using MPI No. of bytes in distributed program, including test data, etc.: 32 189 Distribution format: tar gzip file Keywords: Single ionization, cross sections, continuum-distorted-wave model, continuum- distorted-wave eikonal-initial-state model, target atoms, wave treatment Nature of physical problem: The code calculates total, and differential cross sections for the single ionization of target atoms ranging from hydrogen up to and including argon by both light and heavy ion impact. Method of solution: ARGON allows the user to calculate the cross sections using either the CDW or CDW-EIS [J. Phys. B 16 (1983) 3229] models within the wave treatment. Restrictions on the complexity of the program: Both the CDW and CDW-EIS models are two-state perturbative approximations. Typical running time: Times vary according to input data and number of processors. For one processor the test input data for double differential cross sections (40 points) took less than one second, whereas the test input for total cross sections (20 points) took 32 minutes. Unusual features of the program: none (C) 2003 Elsevier B.V All rights reserved.
Resumo:
We have measured the electrical transport properties of mats of single-walled carbon nanotubes (SWNT) as a function of applied electric and magnetic fields. We find that at low temperatures the resistance as a function of temperature R(T) follows the Mott variable range hopping (VRH) formula for hopping in three dimensions. Measurement of the electric field dependence of the resistance R(E) allows for the determination of the Bohr radius of a localized state a = 700nm. The magnetoresistance (MR) of SWNT mat samples is large and negative at all temperatures and fields studied. The low field negative MR is proportional to H2, in agreement with variable range hopping in two or three dimensions. 3D VRH indicates good intertube contacts, implying that the localization is due to the disorder experienced by the individual tubes. The 3D localization radius gives a measure of the ID localization length on the individual tubes, which we estimate to be >700 nm. Implications for the electron-phonon mean free path are discussed.
Resumo:
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.
Resumo:
This paper summarises some of the most recent work that has been done on nanoscale ferroelectrics as a result of a joint collaborative research effort involving groups in Queen's University Belfast, the University of Cambridge and the University of St. Andrews. Attempts have been made to observe fundamental effects of reduced size, and increasing morphological complexity, on ferroelectric behaviour by studying the functional response and domain characteristics in nanoscale single crystal material, whose size and morphology have been defined by Focused Ion Beam (FIB) patterning. This approach to nanoshape fabrication has allowed the following broad statements to be made: (i) in single crystal BaTiO3 sheets, permittivity and phase transition behaviour is not altered from that of bulk material down to a thickness of similar to 75 nm; (ii) in single crystal BaTiO3 sheets and nanowires changes in observed domain morphologies are consistent with large scale continuum modeling.
Resumo:
The focused ion beam microscope (FIB) has been used to fabricate thin parallel-sided ferroelectric capacitors from single crystals of BaTiO3 and SrTiO3. A series of nano-sized capacitors ranging in thickness from similar to660 nm to similar to300 nm were made. Cross-sectional high resolution transmission electron microscopy (HRTEM) revealed that during capacitor fabrication, the FIB rendered around 20 nm of dielectric at the electrode-dielectric interface amorphous, associated with local gallium impregnation. Such a region would act electrically in series with the single crystal and would presumably have a considerable negative influence on the dielectric properties. However, thermal annealing prior to gold electrodes deposition was found to fully recover the single crystal capacitors and homogenise the gallium profile. The dielectric testing of the STO ultra-thin single crystal capacitors was performed yielding a room temperature dielectric constant of similar to300, as is the case in bulk. Therefore, there was no evidence of a collapse in dielectric constant associated with thin film dimensions.
Resumo:
The origin of the unusual 90 degrees ferroelectric/ferroelastic domains, consistently observed in recent studies on mesoscale and nanoscale free-standing single crystals of BaTiO3 [Schilling , Phys. Rev. B 74, 024115 (2006); Schilling , Nano Lett. 7, 3787 (2007)], has been considered. A model has been developed which postulates that the domains form as a response to elastic stress induced by a surface layer which does not undergo the paraelectric-ferroelectric cubic-tetragonal phase transition. This model was found to accurately account for the changes in domain periodicity as a function of size that had been observed experimentally. The physical origin of the surface layer might readily be associated with patterning damage, seen in experiment; however, when all evidence of physical damage is removed from the BaTiO3 surfaces by thermal annealing, the domain configuration remains practically unchanged. This suggests a more intrinsic origin, such as the increased importance of surface tension at small dimensions. The effect of surface tension is also shown to be proportional to the difference in hardness between the surface and the interior of the ferroelectric. The present model for surface-tension induced twinning should also be relevant for finely grained or core-shell structured ceramics.
Resumo:
Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.