1000 resultados para Silver alloys
Resumo:
Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag-2Fe(CN)(5)NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.
Resumo:
Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.
Resumo:
Nonlinear optical properties (NLO) of a graphene oxide-silver (GO-Ag) nanocomposite have been investigated by the Z-scan setup at Q-switched Nd:YAG laser second harmonic radiation i.e., at 532 nm excitation in a nanosecond regime. A noteworthy enhancement in the NLO properties in the GO-Ag nanocomposite has been reported in comparison with those of the synthesized GO nanosheet. The extracted value of third order nonlinear susceptibility (chi(3)), at a peak intensity of I-0 = 0.2 GW cm(-2), for GO-Ag has been found to be 2.8 times larger than that of GO. The enhancement in NLO properties in the GO-Ag nanocomposite may be attributed to the complex energy band structures formed during the synthesis which promote resonant transition to the conduction band via surface plasmon resonance (SPR) at low laser intensities and excited state transition (ESA) to the conduction band of GO at higher intensities. Along with this photogenerated charge carriers in the conduction band of silver or the increase in defect states during the formation of the GO-Ag nanocomposite may contribute to ESA. Open aperture Z-scan measurement indicates reverse saturable absorption (RSA) behavior of the synthesized nanocomposite which is a clear indication of the optical limiting (OL) ability of the nanocomposite.
Resumo:
In recent years, silver nanoparticles (AgNPs) have attracted considerable interest in the field of food, agriculture and pharmaceuticals mainly due to its antibacterial activity. AgNPs have also been reported to possess toxic behavior. The toxicological behavior of nanomaterials largely depends on its size and shape which ultimately depend on synthetic protocol. A systematic and detailed analysis for size variation of AgNP by thermal co-reduction approach and its efficacy toward microbial and cellular toxicological behavior is presented here. With the focus to explore the size-dependent toxicological variation, two different-sized NPs have been synthesized, i.e., 60 nm (Ag60) and 85 nm (Ag85). A detailed microbial toxicological evaluation has been performed by analyzing minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), diameter of inhibition zone (DIZ), growth kinetics (GrK), and death kinetics (DeK). Comparative cytotoxicological behavior was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It has been concluded by this study that the size of AgNPs can be varied, by varying the concentration of reactants and temperature called as ``thermal co-reduction'' approach, which is one of the suitable approaches to meet the same. Also, the smaller AgNP has shown more microbial and cellular toxicity.
Resumo:
Bentonite is a preferred buffer and backfill material for deep geological disposal of high-level nuclear waste (HLW). Bentonite does not retain anions by virtue of its negatively charged basal surface. Imparting anion retention ability to bentonite is important to enable the expansive clay to retain long-lived I-129 (iodine-129; half-life = 16 million years) species that may escape from the HLW geological repository. Silver-kaolinite (AgK) material is prepared as an additive to improve the iodide retention capacity of bentonite. The AgK is prepared by heating kaolinite-silver nitrate mix at 400 degrees C to study the kaolinite influence on the transition metal ion when reacting at its dehydroxylation temperature. Thermo gravimetric-Evolved Gas Detection analysis, X-ray diffraction analysis, X-ray photo electron spectroscopy and electron probe micro analysis indicated that silver occurs as AgO/Ag2O surface coating on thermally reacting kaolinite with silver nitrate at 400 degrees C.
Resumo:
Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.
Resumo:
A metastable nano-scale disordered precipitate with orthorhombic symmetry has been identified using high resolution scanning transmission electron microscopy. The phase, termed O', is metastable, formed by a shuffle mechanism involving a {110}<1<(1)over bar>0> transverse phonon wave in samples of Ti-26Nb-2Zr (at.%) quenched from the beta phase. The addition of 2% Zr to Ti-26Nb appears to suppress significantly the stability of both the {11 (2) over bar}<111> shear and 2/3 <111> longitudinal phonon wave but promotes the {110}<1<(1)over bar>0> transverse shuffle. This results in the nano-size O' phase being homogeneously formed in the parent beta phase matrix rather than the massive alpha `' phase. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
A nano-scale instability in the beta phase resulting in the formation of the disordered orthorhombic O' phase has been discovered in a fairly dilute binary Ti-Mo alloy, using selected area electron diffraction and high resolution scanning transmission electron microscopy. The O' phase informed in the alloy when the Mo content exceeds a critical value. The instability occurs in beta-solutionized samples that have been quenched to room temperature and is found to co-exist with athermal omega to phase. Interestingly, this nano-scale instability, involving the {110}<1<(1)over bar>0> soft-phonon shuffle, occurs in the beta phase without deliberate additions of either interstitial or substitutional solutes. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Significant research has been pursued to develop solar selective metallic coatings using a variety of coating deposition techniques, with limited attempts to assess the properties of bulk metallic materials for solar energy applications. In developing bulk solar reflectors with good reflectance in the entire solar range, we report a new class of reflector materials based on Cu-Sn intermetallics with tailored substitution of aluminium or zinc. Our experimental results suggest that the arc melted-suction cast Cu (78.8 at%)-Al (21.2 at%) alloy with nanoscale surface roughness can exhibit a combination of 89% bulk specular reflectance and 83% bulk solar reflectance, together with a hardness of 2 GPa. We show that the present alloy design approach paves the way for further opportunities of tuning the spectral properties of this new class of solar reflector material. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.
Resumo:
(Zr65Al10Ni10Cu15)(100-x) Nb-x glass forming alloys with Nb contents ranging from 0 to 15 at.% were prepared by water-cooled copper mould cast. The alloys with different Nb contents exhibited different microstructures and mechanical properties. Unlike the monolithic Zr65Al10Ni10Cu15 bulk metallic glass, only a few primary bee beta-Ti phase dendrites were found to distribute in the glassy matrix of the alloys with x = 5. For alloys with x = 10, more beta-phase dendrites forms, together with quasicrystalline particles densely distributed in the matrix of the alloys. For alloys with x = 15, the microstructure of the alloy is dominated by a high density of fully developed P-phase dendrites and the volume fraction of quasicrystalline particles significantly decreases. Room temperature compression tests showed that the alloys with x = 5 failed at 1793 MPa and exhibited an obvious plastic strain of 3.05%, while the other samples all failed in a brittle manner. The ultimate fracture strengths are 1793, 1975 and 1572 MPa for the alloys with x = 0, 10 and 15 at.% Nb, respectively.
Resumo:
Minor yttrium addition can improve the glass-forming ability of Cu-Zr-Al ternary alloys via suppression of the growth of eutectic clusters. Yttrium addition also makes the room temperature ductility of the alloys decrease, and both the compressive strength and elastic strain limits increase slightly.