895 resultados para Shear Localization
Resumo:
Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves, and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic, directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations, obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to implement in drag parametrization schemes. When normalized by the surface drag in the absence of shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux becomes independent of the detailed shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present calculations account for shear-induced amplification or reduction of the surface drag, and partial absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes obtained using this model and a linear numerical model without the WKB approximation are evaluated and compared for two idealized wind profiles with directional shear, for different Richardson numbers (Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate keeping a constant magnitude). These results are complementary, in the Ri > O(1) parameter range, to Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag parametrizations used in global weather and climate prediction models.
Resumo:
Transient responses of electrorheological fluids to square-wave electric fields in steady shear are investigated by computational simulation method. The structure responses of the fluids to the field with high frequency are found to be very similar to that to the field with very low frequency or the sudden applied direct current field. The stress rise processes are also similar in both cases and can be described by an exponential expression. The characteristic time tau of the stress response is found to decrease with the increase of the shear rate (gamma) over dot and the area fraction of the particles phi(2). The relation between them can be roughly expressed as tau proportional to(gamma) over dot(-3/4)phi(2)(-3/2). The simulation results are compared with experimental measurements. The aggregation kinetics of the particles in steady shear is also discussed according to these results.
Resumo:
The three-dimensional molecular dynamics simulation method has been used to study the dynamic responses of an electrorheological (ER) fluid in oscillatory shear. The structure and related viscoelastic behaviour of the fluid are found to be sensitive to the amplitude of the strain. With the increase of the strain amplitude, the structure formed by the particles changes from isolated columns to sheet-like structures which may be perpendicular or parallel to the oscillating direction. Along with the structure evolution, the field-induced moduli decrease significantly with an increase in strain amplitude. The viscoelastic behaviour of the structures obtained in the cases of different strain amplitudes was examined in the linear response regime and an evident structure dependence of the moduli was found. The reason for this lies in the anisotropy of the arrangement of the particles in these structures. Short-range interactions between the particles cannot be neglected in determining the viscoelastic behaviour of ER fluids at small strain amplitude, especially for parallel sheets. The simulation results were compared with available experimental data and good agreement was reached for most of them.
Resumo:
The effect of the direction of external electric field on the shear stress of an ER fluid has been studied by molecular-dynamics simulation. Due to the formation of inclined chains, the shear stress strongly depends on the direction of the field, and it may be very large under some special field direction. And theoretical model of ideal microstructure of ER fluids has proved this result. Thus the ER effect may be greatly enhanced just by choosing an optimum direction for the field without any additional requirement, suggesting a promising way to the practical application of ER fluids.
Resumo:
We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.
Resumo:
Surfaces coated with polymer brushes in a good solvent are known to exhibit excellent tribological properties. We have performed coarse-grained equilibrium and nonequilibrium molecular dynamics (MD) simulations to investigate dextran polymer brushes in an aqueous environment in molecular detail. In a first step, we determined simulation parameters and units by matching experimental results for a single dextran chain. Analyzing this model when applied to a multichain system, density profiles of end-tethered polymer brushes obtained from equilibrium MD simulations compare very well with expectations based on self-consistent field theory. Simulation results were further validated against and correlated with available experimental results. The simulated compression curves (normal force as a function of surface separation) compare successfully with results obtained with a surface forces apparatus. Shear stress (friction) obtained via nonequilibrium MD is contrasted with nanoscale friction studies employing colloidal-probe lateral force microscopy. We find good agreement in the hydrodynamic regime and explain the observed leveling-off of the friction forces in the boundary regime by means of an effective polymer–wall attraction.
Resumo:
Configurations of supercooled liquids residing in their local potential minimum (i.e. in their inherent structure, IS) were found to support a non-zero shear stress. This IS stress was attributed to the constraint to the energy minimization imposed by boundary conditions, which keep size and shape of the simulation cell fixed. In this paper we further investigate the influence of these boundary conditions on the IS stress. We investigate its importance for the computation of the low frequency shear modulus of a glass obtaining a consistent picture for the low- and high frequency shear moduli over the full temperature range. Hence, we find that the IS stress corresponds to a non-thermal contribution to the fluctuation term in the Born-Green expression. This leads to an unphysical divergence of the moduli in the low temperature limit if no proper correction for this term is applied. Furthermore, we clarify the IS stress dependence on the system size and put its origin on a more formal basis.
Resumo:
This report provides case studies of Early Warning Systems (EWSs) and risk assessments encompassing three main hazard types: drought; flood and cyclone. The case studies are taken from ten countries across three continents (focusing on Africa, South Asia and the Caribbean). The case studies have been developed to assist the UK Department for International Development (DFID) to prioritise areas for Early Warning System (EWS) related research under their ‘Science for Humanitarian Emergencies and Resilience’ (SHEAR) programme. The aim of these case studies is to ensure that DFID SHEAR research is informed by the views of Non-Governmental Organisations (NGOs) and communities engaged with Early Warning Systems and risk assessments (including community-based Early Warning Systems). The case studies highlight a number of challenges facing Early Warning Systems (EWSs). These challenges relate to financing; integration; responsibilities; community interpretation; politics; dissemination; accuracy; capacity and focus. The case studies summarise a number of priority areas for EWS related research: • Priority 1: Contextualising and localising early warning information • Priority 2: Climate proofing current EWSs • Priority 3: How best to sustain effective EWSs between hazard events? • Priority 4: Optimising the dissemination of risk and warning information • Priority 5: Governance and financing of EWSs • Priority 6: How to support EWSs under challenging circumstances • Priority 7: Improving EWSs through monitoring and evaluating the impact and effectiveness of those systems
Resumo:
This paper investigates the effect on balance of a number of Schur product-type localization schemes which have been designed with the primary function of reducing spurious far-field correlations in forecast error statistics. The localization schemes studied comprise a non-adaptive scheme (where the moderation matrix is decomposed in a spectral basis), and two adaptive schemes, namely a simplified version of SENCORP (Smoothed ENsemble COrrelations Raised to a Power) and ECO-RAP (Ensemble COrrelations Raised to A Power). The paper shows, we believe for the first time, how the degree of balance (geostrophic and hydrostatic) implied by the error covariance matrices localized by these schemes can be diagnosed. Here it is considered that an effective localization scheme is one that reduces spurious correlations adequately but also minimizes disruption of balance (where the 'correct' degree of balance or imbalance is assumed to be possessed by the unlocalized ensemble). By varying free parameters that describe each scheme (e.g. the degree of truncation in the schemes that use the spectral basis, the 'order' of each scheme, and the degree of ensemble smoothing), it is found that a particular configuration of the ECO-RAP scheme is best suited to the convective-scale system studied. According to our diagnostics this ECO-RAP configuration still weakens geostrophic and hydrostatic balance, but overall this is less so than for other schemes.
Resumo:
5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions,and mainly located in transposable element (TE) genes, especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.
Resumo:
This article argues that two movements in constant interplay operate within the historical trajectory of the Spanish language: the localization that becomes globalized and the globalization that becomes localized. Equally, this article illustrates how, at the same time that Spanish is expanding in the world, new idiosyncratic and localized forms of the language are emerging. This article deals with the issues of standardization and language ideology, language contact, and redefinition of identities. The article focuses on three geographic loci: Spain, where Spanish opposes Catalan, Basque, and Galician; the United States, where migrants' Spanish dialects converge and confront English and each other; and finally, Latin America, where Spanish is in contact with Portuguese, indigenous, and Afro-Hispanic languages. The concepts that structure the discussion explain both language expansion and contraction as well as the conflict and constant negotiation between a language's standardized forms and its regional and social varieties.
Resumo:
The C-type lectin receptor CLEC-2 is expressed primarily on the surface of platelets, where it is present as a dimer, and is found at low level on a subpopulation of other hematopoietic cells, including mouse neutrophils [1–4] Clustering of CLEC-2 by the snake venom toxin rhodocytin, specific antibodies or its endogenous ligand, podoplanin, elicits powerful activation of platelets through a pathway that is similar to that used by the collagen receptor glycoprotein VI (GPVI) [4–6]. The cytosolic tail of CLEC-2 contains a conserved YxxL sequence preceded by three upstream acidic amino acid residues, which together form a novel motif known as a hemITAM. Ligand engagement induces tyrosine phosphorylation of the hemITAM sequence providing docking sites for the tandem-SH2 domains of the tyrosine kinase Syk across a CLEC-2 receptor dimer [3]. Tyrosine phosphorylation of Syk by Src family kinases and through autophosphorylation leads to stimulation of a downstream signaling cascade that culminates in activation of phospholipase C γ2 (PLCγ2) [4,6]. Recently, CLEC-2 has been proposed to play a major role in supporting activation of platelets at arteriolar rates of flow [1]. Injection of a CLEC-2 antibody into mice causes a sustained depletion of the C-type lectin receptor from the platelet surface [1]. The CLEC-2-depleted platelets were unresponsive to rhodocytin but underwent normal aggregation and secretion responses after stimulation of other platelet receptors, including GPVI [1]. In contrast, there was a marked decrease in aggregate formation relative to controls when CLEC-2-depleted blood was flowed at arteriolar rates of shear over collagen (1000 s−1 and 1700 s−1) [1]. Furthermore, antibody treatment significantly increased tail bleeding times and mice were unable to occlude their vessels after ferric chloride injury [1]. These data provide evidence for a critical role for CLEC-2 in supporting platelet aggregation at arteriolar rates of flow. The underlying mechanism is unclear as platelets do not express podoplanin, the only known endogenous ligand of CLEC-2. In the present study, we have investigated the role of CLEC-2 in platelet aggregation and thrombus formation using platelets from a novel mutant mouse model that lacks functional CLEC-2.
Resumo:
Start-up shear rheology is a standard experiment used for characterizing polymer flow, and to test various models of polymer dynamics. A rich phenomenology is developed for behavior of entangled monodisperse linear polymers in such tests, documenting shear stress overshoots as a function of shear rates and molecular weights. A tube theory does a reasonable qualitative job at describing these phenomena, although it involves several drastic approximations and the agreement can be fortuitous. Recently, Lu and coworkers published several papers [e.g. Lu {\it et al.} {\it ACS Macro Lett}. 2014, 3, 569-573] reporting results from molecular dynamics simulations of linear entangled polymers, which contradict both theory and experiment. Based on these observations, they made very serious conclusions about the tube theory, which seem to be premature. In this letter, we repeat simulations of Lu {\it et al.} and systematically show that neither their simulation results, nor their comparison with theory are confirmed.
Resumo:
OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.