856 resultados para Shale oils
Resumo:
O cancro é um problema de saúde crescente no mundo e é a segunda causa de morte depois das doenças cardíacas. De acordo com a Agência Internacional de Investigação em Cancro (IARC) existem atualmente mais de 10 milhões de casos de cancro por ano no mundo. Os produtos naturais oferecem oportunidades de inovação na descoberta de novos fármacos. Neste sentido, os compostos naturais isolados a partir de plantas medicinais, como potenciais fontes de novas drogas anticancerígenas, têm tido um interesse crescente. Os Óleos Essenciais (OEs) são sintetizados pelas plantas e têm sido estudados pelas suas inúmeras atividades biológicas, incluindo anticancerígena, anti-inflamatória, antimicrobiana, antiviral, antioxidante e repelente de insetos. Este estudo tem como objetivos determinar a eficácia de OEs de seis espécies de plantas das dunas de Peniche (Portugal), como potenciais agentes terapêuticos anticancerígenos em linhas celulares de cancro da mama (MCF7) e do colo-rectal (RKO), assim como perceber o mecanismo de ação destes OEs. Neste estudo, partes aéreas de Artemisia campestris subsp. maritima, Crithmum maritimum, Eryngium maritimum, Juniperus turbinata subsp. turbinata, Otanthus maritimus e Seseli tortuosum foram colhidas na praia da Consolação, em Peniche (Portugal), e os seus OEs isolados através de hidrodestilação. A composição química dos OEs foi investigada por cromatografia gasosa (GC) e por cromatografia gasosa com espetrofotometria de massa (GC-MS) e os compostos maioritários foram descritos para cada óleo. Para avaliar a atividade anticancerígena nas linhas celulares MCF7 e RKO, o método MTS (3- (4, 5-dimethyl- 2 -thiazolyl) - 2, 5-dyphenyl-2H-tetrazolium bromide) foi usado e a viabilidade celular avaliada, através de diluições sucessivas, a concentrações iniciais de 5 μL/mL e 1 μL/mL, com diluição de 1:2 e 1:10, respetivamente, comparando com o controlo (DMSO). De todos os OEs testados, a atividade anticancerígena foi descrita, em ambas as linhas celulares, como observado pela diminuição da viabilidade/proliferação celular – exceto o OE Eryngium maritimum a uma concentração inicial de 5 μL/mL.Com o objetivo de avaliar o mecanismo biológico de ação dos OEs, foi realizado um western blot para marcadores relativos ao bloqueio do ciclo celular e apoptose (p53, p21 e caspase 3 clivada), para Seseli tortuosum e Otanthus maritimus. Foi observado um aumento do nível proteína p53 nas células tratadas com estes OEs, sugerindo a indução de stress celular nas células cancerígenas testadas. No entanto, não foi observada caspase 3 clivada, sugerindo que a apoptose não terá sido a causa para a diminuição da viabilidade/proliferação celular observada. Foi ainda observado o aumento da expressão da p21 com os OEs selecionados, sugerindo que o tratamento com OE está associado ao bloqueio do ciclo celular. Para validar estas observações, a análise realizada por FACS, depois do tratamento indica um possível bloqueio do ciclo celular na fase G1. Concluindo, a concentração inicial de 5 μL/mL revelou ser muito tóxica para as linhas celulares testadas. No entanto, a uma concentração final de 1 μL/mL foi demonstrada uma diminuição da viabilidade/proliferação celular para todos os OEs. No estudo preliminar do mecanismo de ação dos OEs, foi demonstrado, face à presença da p21, que os óleos de Seseli tortuosum e Otanthus maritimus atuam bloqueando o ciclo celular. Para comprovar estes resultados, o FACS realizado (apenas no OE de Seseli tortuosum) revelou que este bloqueio pode ocorrer, pelo aumento da percentagem de células observadas, na fase G1. Estes resultados demonstram o interesse destes OEs de Peniche na procura de novos agentes quimo preventivos contra a progressão do cancro da mama e colo-rectal.
Resumo:
The Bakken region of North Dakota and Montana has experienced perhaps the greatest effects of increased oil and gas development in the United States, with major implications for local governments. Though development of the Bakken began in the early 2000s, large-scale drilling and population growth dramatically affected the region from roughly 2008 through today. This case study examines the local government fiscal benefits and challenges experienced by Dunn County and Watford City, which lie near the heart of the producing region. For both local governments, the initial growth phase presented major fiscal challenges due to rapidly expanding service demands and insufficient revenue. In the following years, these challenges eased as demand for services slowed due to declining industry activity and state tax policies redirected more funds to localities. Looking forward, both local governments describe their fiscal health as stronger because of the Bakken boom, though higher debt loads and an economy heavily dependent on the volatile oil and gas industry each pose challenges for future fiscal stability.
Resumo:
The polar compound (NSO) fractions of seabed petroleums and sediment extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry. The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolysates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore samples are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds correlated with samples exhibiting a high degree of thermal maturity. Several homologous series of related ketone isomers are enriched in the interiors of the hydrothermal vent samples or in hydrothermally-altered sequences of the downcore sediments (DSDP Holes 477 and 481A). The n-alkanones range in carbon number from C11 to C33 with a Cmax from 14 to 23, distributions that are similar to those of the n-alkanes. The alkan-2-ones are usually in highest concentrations, with lower amounts of 3-, 4-, 5-, 6-, 7- (and higher) alkanones, and they exhibit no carbon number preference (there is an odd carbon number preference of alkanones observed for downcore samples). The alkanones are enriched in the interiors of the hydrothermal vent spires or in downcore hydrothermally-altered sediments, indicating an origin at depth or in the hydrothermal fluids and not from an external biogenic deposition. Minor amounts of C13 and C18 isoprenoid ketones are also present. Simulation of the natural hydrothermal alternation process by laboratory hydrous pyrolysis techniques provided information regarding the mode of alkanone formation. Hydrous pyrolysis of n-C32H66 at 350°C for 72 h with water only or water with inorganic additives has been studied using a stainless steel reaction vessel. In each experiment oxygenated hydrocarbons, including alkanones, were formed from the n-alkane. The product distributions indicate a reaction pathway consisting of n-alkanes and a-olefins as primary cracking products with internal olefins and alkanones as secondary reaction products. Hydrous pyrolyses of Messel shale spiked with molecular probes have been performed under similar time and temperature constraints to produce alkanone distributions like those found in the hydrothermal vent petroleums.
Resumo:
The Late Jurassic to Early Cretaceous (Volgian-Ryazanian) was a period of a second-order sea-level low stand, and it provided excellent conditions for the formation of shallow marine black shales in the Norwegian-Greenland Seaway (NGS). IKU Petroleum Research drilling cores taken offshore along the Norwegian shelf were investigated with geochemical and microscopic approaches to (1) determine the composition of the organic matter, (2) characterize the depositional environments, and (3) discuss the mechanisms which may have controlled production, accumulation, and preservation of the organic matter. The black shale sequences show a wide range of organic carbon contents (0.5-7.0 wt %) and consist of thermally immature organic matter of type II to II/III kerogen. Rock-Eval pyrolysis revealed fair to very good petroleum source rock potential, suggesting a deposition in restricted shallow marine basins. Well-developed lamination and the formation of autochthonous pyrite framboids further indicate suboxic to anoxic bottom water conditions. In combination with very low sedimentation rates it seems likely that preservation was the principal control on organic matter accumulation. However, a decrease of organic carbon preservation and an increase of refractory organic matter from the Volgian to the Hauterivian are superimposed on short-term variations (probably reflecting Milankovitch cycles). Various parameters indicate that black shale formation in the NGS was gradually terminated by increased oxidative conditions in the course of a sea-level rise.
Resumo:
Synthesis of Polyhydroxyalkanoates (PHAs) by Pseudomonas mendocina, using different vegetable oils such as, coconut oil, groundnut oil, corn oil and olive oil, as the sole carbon source was investigated for the first time. The PHA yield obtained was compared with that obtained during the production of PHAs using sodium octanoate as the sole carbon source. The fermentation profiles at shaken flask and bioreactor levels revealed that vegetable oils supported the growth of Pseudomonas mendocina and PHA accumulation in this organism. Moreover, when vegetable oil (coconut oil) was used as the sole carbon source, fermentation profiles showed better growth and polymer production as compared to conditions when sodium octanoate was used as the carbon source. In addition, comparison of PHA accumulation at shaken flask and fermenter level confirmed the higher PHA yield at shaken flask level production. The highest cell mass found using sodium octanoate was 1.8 g/L, whereas cell mass as high as 5.1 g/L was observed when coconut oil was used as the feedstock at flask level production. Moreover, the maximum PHA yield of 60.5% dry cell weight (dcw) was achieved at shaken flask level using coconut oil as compared to the PHA yield of 35.1% dcw obtained using sodium octanoate as the sole carbon source. Characterisations of the chemical, physical, mechanical, surface and biocompatibility properties of the polymers produced have been carried out by performing different analyses as described in the second chapter of this study. Chemical analysis using GC and FTIR investigations showed medium chain length (MCL) PHA production in all conditions. GC-MS analysis revealed a unique terpolymer production, containing 3-hydroxyoctanoic acid, 3-hydroxydecanoic acid and 3-hydroxydodecanoic acid when coconut oil, groundnut oil, olive oil, and corn oil were used as the carbon source. Whereas production of the homopolymer containing 3-hydroxyoctanoic acid was observed when sodium octanoate was used as the carbon source. MCL-PHAs produced in this study using sodium octanoate, coconut oil, and olive oil exhibited melting transitions, indicating that each of the PHA was crystalline or semi-crystalline polymer. In contrast, the thermal properties of PHAs produced from groundnut and corn oils showed no melting transition, indicating that they were completely amorphous or semi-crystalline, which was also confirmed by the X-Ray Diffraction (XRD) results obtained in this study. Mechanical analysis of the polymers produced showed higher stiffness of the polymer produced from coconut oil than the polymer from sodium octanoate. Surface characterisation of the polymers using Scanning Electron Microscopy (SEM) revealed a rough surface topography and surface contact angle measurement revealed their hydrophobic nature. Moreover, to investigate the potential applicability of the produced polymers as the scaffold materials for dental pulp regeneration, multipotent human Mesenchymal stem cells (hMSCs) were cultured onto the polymer films. Results indicated that these polymers are not cytotoxic towards the hMSCs and could support their attachment and proliferation. Highest cell growth was observed on the polymer samples produced from corn oil, followed by the polymer produced using coconut oil. In conclusion, this work established, for the first time, that vegetable oils are a good economical source of carbon for production of MCL-PHA copolymers effectively by Pseudomonas mendocina. Moreover, biocompatibility studies suggest that the produced polymers may have potential for dental tissue engineering application.
Resumo:
In the past decade, several major food safety crises originated from problems with feed. Consequently, there is an urgent need for early detection of fraudulent adulteration and contamination in the feed chain. Strategies are presented for two specific cases, viz. adulterations of (i) soybean meal with melamine and other types of adulterants/contaminants and (ii) vegetable oils with mineral oil, transformer oil or other oils. These strategies comprise screening at the feed mill or port of entry with non-destructive spectroscopic methods (NIRS and Raman), followed by post-screening and confirmation in the laboratory with MS-based methods. The spectroscopic techniques are suitable for on-site and on-line applications. Currently they are suited to detect fraudulent adulteration at relatively high levels but not to detect low level contamination. The potential use of the strategies for non-targeted analysis is demonstrated.
Resumo:
The spouted bed was widely used due to its good mixing of particles and effective phase transferability between the gas and solid phase. In this paper, the transportation process of particles in a 3D spouted bed was studied using the Computational Particle Fluid Dynamics (CPFD) numerical method. Experiments were conducted to verify the validity of the simulation results. Distributions of the pressure, velocities and particle concentration of transportation devices were investigated. The motion state and characteristics of multiphase flows in the transportation device were demonstrated under various operating conditions. The results showed that a good consistency was obtained between the simulated results and the experimental results. The motion characteristics of the gas-solid two-phase flow in the device was effectively predicted, which could assist the optimal operating condition estimation for the spouted transportation process.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Syzygium anisatum (formerly Backhousia anisata and Anetholea anisata) is an Australian rainforest tree with leaves that produce an essential oil (EO) that has the characteristic aroma of aniseed. It is referred to as aniseed myrtle or anise myrtle in the trade and the fresh and dried leaves of this plant are used as a herb in culinary applications. The EO is extracted by steam distillation of the leaves and the major aromatic volatile compound is anethole. The EO has broad spectrum antimicrobial activity but is more effective against bacteria than fungi. Indigenous Australians have used anise myrtle for its medicinal values and in recent times it has been used as a flavoring agent by the food and beverage industry. This chapter covers the use of anise myrtle EO in food and agricultural applications, botanical aspects, and chemical composition.
Resumo:
Lemon myrtle has been traditionally used by indigenous Australians for cooking and healing. More recently, lemon myrtle leaves are used as a dry or fresh herb in food applications and the essential oil (EO) used as a flavoring agent in food and beverages. The leaf of the lemon myrtle (Backhousia citriodora) is steam distilled to produce the EO. Lemon myrtle EO is known for its characteristic lemon flavor and the major chemical component contributing to the aroma is citral. The EO has broad spectrum antimicrobial activity and is very effective against fungi and has increased the potential of using the EO in food preservation and treatment of postharvest diseases in fruits. This chapter covers the use of lemon myrtle EO in food and agriculture applications, general usage, botanical aspects, and chemical composition.
Resumo:
Tasmannia lanceolata, commonly known as Tasmanian pepper leaf or mountain pepper, is an Australian native plant that produces an essential oil with a characteristic pungent flavor attributed to the sesquiterpene polygodial. The dried and fresh leaves are used in culinary applications. The essential oil is produced by a solvent extraction process, and the resultant concrete is a rich source of the principal pungent molecule polygodial and other volatiles. The Tasmanian pepper leaf extract has broad-spectrum antimicrobial activity and is very effective against fungi, especially yeasts. This demonstrates its potential to be used in the food industry as a natural preservative. Indigenous Australians have used Tasmanian pepper leaves for therapeutic purposes; in recent times, it is been used as a flavoring agent and enhancer of pungency in food products. This chapter covers the use of Tasmanian pepper leaf essential oil in food applications, its botanical aspects, and its chemical composition.
Resumo:
This thesis examines the importance of effective stakeholder engagement that complies with the doctrines of social justice in non-renewable resources management decision-making. It uses hydraulic fracturing in the Green Point Shale Formation in Western Newfoundland as a case study. The thesis uses as theoretical background John Rawls’ and David Miller’ theory of social justice, and identifies the social justice principles, which are relevant to stakeholder engagement. The thesis compares the method of stakeholder engagement employed by the Newfoundland and Labrador Hydraulic Fracturing Review Panel (NLHFRP), with the stakeholder engagement techniques recommended by the Structured Decision Making (SDM) model, as applied to a simulated case study involving hydraulic fracturing in the Green Point Shale Formation. Using the already identified social justice principles, the thesis then developed a framework to measure the level of compliance of both stakeholder engagement techniques with social justice principles. The main finding of the thesis is that the engagement techniques prescribed by the SDM model comply more closely with the doctrines of social justice than the engagement techniques applied by the NLHFRP. The thesis concludes by recommending that the SDM model be more widely used in non- renewable resource management decision making in order to ensure that all stakeholders’ concerns are effectively heard, understood and transparently incorporated in the nonrenewable resource policies to make them consistent with local priorities and goals, and with the social justice norms and institutions.
Resumo:
Salvia is a plant genus widely used in folk medicine in the Mediterranean area since antiquity. A large number of Salvia essential oils have been reported against diverse microorganisms. In the current study, chemical composition of essential oils from leaves and flowers of Salvia algeriensis (Desf.) was determined using gas chromatography-electron impact mass spectrometry (GC-EIMS) as well as their antifungal activity against phytopathogenic fungi Alternaria solani and Fusarium oxysporum exploring disk method. The GC-EIMS analysis identified 59 compounds (84.8%) in the essential oil obtained from leaves of S. algeriensis. Its major constituents were benzaldehyde (9.7%), eugenol (8.7%) and phenylethyl alcohol (8.4%). In flowers oil, 34 compounds (92.8%) were detected. The main ones were viridiflorol (71.1%) and globulol (8.6%). The essential oil obtained from leaves exhibited the highest antifungal activity, where the effective dose inhibiting 50% of mycelial fungal (ED50) against A. solani was 0.90 μL mL-1 with minimum inhibitory concentration (MIC) equal to 2 μL mL-1, whereas the ED50 and MIC in F. oxysporum culture was 1.84 μL mL-1 and 3 μL mL-1 respectively. The mycelial inhibition by flowers oil varies from 1.77 μL mL-1 (ED50) with A. solani culture (MIC 6.5 μL mL-1) to the lowest effect recorded (ED50 3.00 μL mL-1 and MIC 9.33 μL mL-1) against F. oxysporum. To our best knowledge, this is the first report on S. algeriensis, their leaves oil can constitute an alternative biocontrol against phytopathogenic fungi commonly controlled by chemical fungicides.