897 resultados para Sensor Data Visualization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, portable and low-cost system for odor detection was developed using a single MOS commercial sensor and a microcontroller. The temperature modulation technique was implemented applying a DC signal pulse to the sensor heater by a bipolar transistor. Two odorant profiles, ethanol and acetic acid vapors, were obtained and distinguished based on their amplitude versus time responses. Response for acetic acid was not reported by the sensor manufacturer. An ethanol vapor calibration curve was also obtained. Experimental data showed a potential behavior according to the theoretical equation of the MOS sensors. Values of logK=0.457 and α=-0.213 for a 95% confidence level were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type “Quartzarenic Neosoil”. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to perform an experimental study to evaluate the proper operation distance between the nodes of a wireless sensor network available on the market for different agricultural crops (maize, physic nut, eucalyptus). The experimental data of the network performance offers to farmers and researchers information that might be useful to the sizing and project of the wireless sensor networks in similar situations to those studied. The evaluation showed that the separation of the nodes depends on the type of culture and it is a critical factor to ensure the feasibility of using WSN. In the configuration used, sending packets every 2 seconds, the battery life was about four days. Therefore, the autonomy may be increased with a longer interval of time between sending packets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to group temporal profiles of 10-day composites NDVI product by similarity, which was obtained by the SPOT Vegetation sensor, for municipalities with high soybean production in the state of Paraná, Brazil, in the 2005/2006 cropping season. Data mining is a valuable tool that allows extracting knowledge from a database, identifying valid, new, potentially useful and understandable patterns. Therefore, it was used the methods for clusters generation by means of the algorithms K-Means, MAXVER and DBSCAN, implemented in the WEKA software package. Clusters were created based on the average temporal profiles of NDVI of the 277 municipalities with high soybean production in the state and the best results were found with the K-Means algorithm, grouping the municipalities into six clusters, considering the period from the beginning of October until the end of March, which is equivalent to the crop vegetative cycle. Half of the generated clusters presented spectro-temporal pattern, a characteristic of soybeans and were mostly under the soybean belt in the state of Paraná, which shows good results that were obtained with the proposed methodology as for identification of homogeneous areas. These results will be useful for the creation of regional soybean "masks" to estimate the planted area for this crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a low-cost, high quality device capable of monitoring indirect activity by detecting touch-release events on a conducting surface, i.e., the animal's cage cover. In addition to the detecting sensor itself, the system includes an IBM PC interface for prompt data storage. The hardware/software design, while serving for other purposes, is used to record the circadian activity rhythm pattern of rats with time in an automated computerized fashion using minimal cost computer equipment (IBM PC XT). Once the sensor detects a touch-release action of the rat in the upper portion of the cage, the interface sends a command to the PC which records the time (hours-minutes-seconds) when the activity occurred. As a result, the computer builds up several files (one per detector/sensor) containing a time list of all recorded events. Data can be visualized in terms of actograms, indicating the number of detections per hour, and analyzed by mathematical tools such as Fast Fourier Transform (FFT) or cosinor. In order to demonstrate method validation, an experiment was conducted on 8 Wistar rats under 12/12-h light/dark cycle conditions (lights on at 7:00 a.m.). Results show a biological validation of the method since it detected the presence of circadian activity rhythm patterns in the behavior of the rats

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of biological data has grown exponentially in recent decades. Modern biotechnologies, such as microarrays and next-generation sequencing, are capable to produce massive amounts of biomedical data in a single experiment. As the amount of the data is rapidly growing there is an urgent need for reliable computational methods for analyzing and visualizing it. This thesis addresses this need by studying how to efficiently and reliably analyze and visualize high-dimensional data, especially that obtained from gene expression microarray experiments. First, we will study the ways to improve the quality of microarray data by replacing (imputing) the missing data entries with the estimated values for these entries. Missing value imputation is a method which is commonly used to make the original incomplete data complete, thus making it easier to be analyzed with statistical and computational methods. Our novel approach was to use curated external biological information as a guide for the missing value imputation. Secondly, we studied the effect of missing value imputation on the downstream data analysis methods like clustering. We compared multiple recent imputation algorithms against 8 publicly available microarray data sets. It was observed that the missing value imputation indeed is a rational way to improve the quality of biological data. The research revealed differences between the clustering results obtained with different imputation methods. On most data sets, the simple and fast k-NN imputation was good enough, but there were also needs for more advanced imputation methods, such as Bayesian Principal Component Algorithm (BPCA). Finally, we studied the visualization of biological network data. Biological interaction networks are examples of the outcome of multiple biological experiments such as using the gene microarray techniques. Such networks are typically very large and highly connected, thus there is a need for fast algorithms for producing visually pleasant layouts. A computationally efficient way to produce layouts of large biological interaction networks was developed. The algorithm uses multilevel optimization within the regular force directed graph layout algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in Information and Communication Technology (ICT), especially those related to the Internet of Things (IoT), are facilitating smart regions. Among many services that a smart region can offer, remote health monitoring is a typical application of IoT paradigm. It offers the ability to continuously monitor and collect health-related data from a person, and transmit the data to a remote entity (for example, a healthcare service provider) for further processing and knowledge extraction. An IoT-based remote health monitoring system can be beneficial in rural areas belonging to the smart region where people have limited access to regular healthcare services. The same system can be beneficial in urban areas where hospitals can be overcrowded and where it may take substantial time to avail healthcare. However, this system may generate a large amount of data. In order to realize an efficient IoT-based remote health monitoring system, it is imperative to study the network communication needs of such a system; in particular the bandwidth requirements and the volume of generated data. The thesis studies a commercial product for remote health monitoring in Skellefteå, Sweden. Based on the results obtained via the commercial product, the thesis identified the key network-related requirements of a typical remote health monitoring system in terms of real-time event update, bandwidth requirements and data generation. Furthermore, the thesis has proposed an architecture called IReHMo - an IoT-based remote health monitoring architecture. This architecture allows users to incorporate several types of IoT devices to extend the sensing capabilities of the system. Using IReHMo, several IoT communication protocols such as HTTP, MQTT and CoAP has been evaluated and compared against each other. Results showed that CoAP is the most efficient protocol to transmit small size healthcare data to the remote servers. The combination of IReHMo and CoAP significantly reduced the required bandwidth as well as the volume of generated data (up to 56 percent) compared to the commercial product. Finally, the thesis conducted a scalability analysis, to determine the feasibility of deploying the combination of IReHMo and CoAP in large numbers in regions in north Sweden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and efficient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the field of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workflows and strong emphasis on result reportingand visualization. Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specifically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workflows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specific data setandthereforeguidelinesforchoosing an optimal method are given. The data analysis tools, methods and workflows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The first study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specification in mouse embryonicstem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel electrochemical sensor has been developed for the determination of nimesulide. The sensor is based on the NIM- molybdophosphoric acid (MPA) as the electroactive material in PVC matrix in presence of bis(2-ethyl hexyl) phthalate (BEP) as a plasticizer. The sensor showed a fast, stable, near Nernstian response for 1 × 10-2 –1 × 10-6 M NIM over the pH range 5 – 8 with a slope 55.6 ±0.5m V/decade and the response time is < 45 s. Selectivity coefficient data for some common ions show negligible interferences. The sensor was successfully applied for the determination of NIM in tablet and the results obtained are in good agreement with those obtained by the official method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-digital capacitive electrodes working as electric field sensors have been developed for touch panel applications. Evaluation circuits to convert variations in electric fields in such sensors into computer compatible data are commercially available. We report development of an Interdigital capacitive electrode working as a sensitive pressure sensor in the range 0-120 kPa. Essentially it is a touch/proximity sensor converted into a pressure sensor with a suitable elastomer buffer medium acting as the pressure transmitter. The performance of the sensor has been evaluated and reported. Such sensors can be made very economical in comparison to existing pressure sensors. Moreover, they are very convenient to be fabricated into sensor arrays involving a number of sensors for distributed pressure sensing applications such as in biomedical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data caching is an important technique in mobile computing environments for improving data availability and access latencies particularly because these computing environments are characterized by narrow bandwidth wireless links and frequent disconnections. Cache replacement policy plays a vital role to improve the performance in a cached mobile environment, since the amount of data stored in a client cache is small. In this paper we reviewed some of the well known cache replacement policies proposed for mobile data caches. We made a comparison between these policies after classifying them based on the criteria used for evicting documents. In addition, this paper suggests some alternative techniques for cache replacement