895 resultados para Sensitive sensors
Resumo:
A direct, extraction-free spectrophotometric method has been developed for the determination of acebutolol hydrochloride (ABH) in pharmaceutical preparations. The method is based on ion-pair complex formation between the drug and two acidic dyes (sulphonaphthalein) namely bromocresol green (BCG) and bromothymol blue (BTB). Conformity to Beer's law enabled the assay of the drug in the range of 0.5-13.8 µg mL-1 with BCG and 1.8-15.9 µg mL-1 with BTB. Compared with a reference method, the results obtained were of equal accuracy and precision. In addition, these methods were also found to be specific for the analysis of acebutolol hydrochloride in the presence of excipients, which are co-formulated in the drug.
Resumo:
Highly sensitive and selective spectrophotometric methods (A and B) were developed for the determination of micro amounts of olanzapine (OLZ). Method A (direct method) is based on the oxidation of olanzapine with a known excess of iodine monochloride (ICl) in an acidic medium. Under the same condition, thymol blue was iodinated by unreacted ICl, and the absorbance of uniodinated thymol blue was measured at 536 nm. The decrease in ICl concentration is a measure of drug concentration. In method B (indirect method), oxidation of OLZ by a known excess of Ce(IV) in sulfuric acid medium followed by the reaction of unreacted Ce(IV) with leuco crystal violet (LCV) to crystal violet (CV), which is measured in an acetate buffer medium ( pH 4.9) at 580 nm. These methods obey the Beer's law in the concentration range of 0.2-1.6 µg mL-1 (method A) and 0.1-1.4 µg mL-1 (method B). The developed procedures have been successfully applied to the determination of OLZ in pure and in dosage forms. The results exhibit no interference from the presence of excipients. The reliability of the methods was established by parallel determination of OLZ against the reference method.
Resumo:
Two new, simple, rapid and reproducible spectrophotometric methods have been developed for the determination of lamotrigine (LMT) both in pure form and in its tablets. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug/dye) of LMT with bromocresol green (BCG) at pH 5.02±0.01 and extraction of the complex into dichloromethane followed by the measurement of the yellow ion-pair complex at 410 nm. In the second (method B), the drug-dye ion-pair complex was dissolved in ethanolic potassium hydroxide and the resulting base form of the dye was measured at 620 nm. Beer's law was obeyed in the concentration range of 1.5-15 µg mL-1 and 0.5-5.0 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 1.6932 x 10(4) and 3.748 x 10(4) L mol-1cm-1. The Sandell sensitivity values are 0.0151 and 0.0068 µg cm-2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the dug and dye (1:1) was determined by Job's continuous variations method and the stability constant of the complex was also calculated. The proposed methods were applied successfully for the determination of drug in commercial tablets.
Resumo:
Adequate supply of oxygen is essential for the survival of multicellular organisms. However, in several conditions the supply of oxygen can be disturbed and the tissue oxygenation is compromised. This condition is termed hypoxia. Oxygen homeostasis is maintained by the regulation of both the use and delivery of oxygen through complex, sensitive and cell-type specific transcriptional responses to hypoxia. This is mainly achieved by one master regulator, a transcription factor called hypoxiainducible factor 1 (HIF-1). The amount of HIF-1 is under tight oxygen-dependent control by a family of oxygen-dependent prolyl hydroxylase domain proteins (PHDs) that function as the cellular oxygen sensors. Three family members (PHD1-3) are known to regulate HIF of which the PHD2 isoform is thought to be the main regulator of HIF-1. The supply of oxygen can be disturbed in pathophysiological conditions, such as ischemic disorders and cancer. Cancer cells in the hypoxic parts of the tumors exploit the ability of HIF-1 to turn on the mechanisms for their survival, resistance to treatment, and escape from the oxygen- and nutrient-deprived environment. In this study, the expression and regulation of PHD2 were studied in normal and cancerous tissues, and its significance in tumor growth. The results show that the expression of PHD2 is induced in hypoxic cells. It is overexpressed in head and neck squamous cell carcinomas and colon adenocarcinomas. Although PHD2 normally resides in the cytoplasm, nuclear translocation of PHD2 was also seen in a subset of tumor cells. Together with the overexpression, the nuclear localization correlated with the aggressiveness of the tumors. The nuclear localization of PHD2 caused an increase in the anchorage-independent growth of cancer cells. This study provides information on the role of PHD2, the main regulator of HIF expression, in cancer progression. This knowledge may prove to be valuable in targeting the HIF pathway in cancer treatment.
Resumo:
In the work eddy current sensors are described and evaluated. Theoretical part includes physical basics of the eddy currents, overview of available commercial products and technologies. Industrial sensors operation was assessed based on several working modes. Apart from this, the model was created in Matlab Simulink with Xilinx Blockset and then translated into a Xilinx ISE Design Suite compatible project. The performance of the resulting implementation was compared to the existing implementation in the Xilinx Spartan 3 FPGA board with the custom made sensor. Additionally, an introduction to FPGAs and VHDL is presented.
Resumo:
Tässä kirjallisuustyössä tutkittiin atomikerroskasvatuksen (ALD) soveltamista kemiantekniikassa. Työn alussa kerrottiin atomikerroskasvatuksesta, sen toimintaperiaatteista ja prosessitekniikasta. Tämän jälkeen tutkittiin viittä eri kemiantekniikan sovellusta, jotka olivat polymeerien pinnoittaminen, heterogeenisten katalyyttien syntetisointi, membraanien modifiointi, korroosionesto ja kaasunilmaisimet. ALD on ohutkalvotekniikka, jolla voidaan valmistaa nanometrin tai jopa Ångströmin (1 Å = 0.1 nm) tarkkuudella epäorgaanisia materiaalikerroksia, jotka yleensä ovat metallioksideja, kuten alumiinioksidi. ALD perustuu kaasu-kiintoainereaktioihin, joissa kaasumaiset kemialliset prekursorit reagoivat vuorotellen kasvualustan kanssa. Tyypilliset prekursorit ovat metalliligandi ja vesi, joka on yleisin hapen lähde ALD-reaktioissa. ALD−reaktiot suoritetaan yleensä matalassa paineessa (100−200 Pa) ja korkeassa lämpötilassa (200–400 °C) suljetussa reaktorikammiossa. ALD-prosesseissa voidaan hyödyntää myös plasmaa alentamaan reaktiolämpötiloja. Plasman avulla prekursoreista luodaan hyvin reaktiivisia radikaaleja, jotka voivat reagoida jopa huoneenlämmössä. Lämpöherkkiä polymeerejä voidaan pinnoittaa ohutkalvoilla, joilla voidaan lisätä esimerkiksi pakkausmateriaalien suojaa happea ja vesihöyryä vastaan. ALD:llä voidaan syntetisoida tarkasti nanomittakaavan heterogeenisiä katalyyttejä, joilla on korkea dispersio tukimateriaalin pinnalla. ALD:n avulla voidaan säästää katalyyttimateriaalia menettämättä katalyytin aktiivisuutta, mikä on tärkeää monien katalyyttisovellusten taloudellisuuden kannalta, esimerkiksi polttokennot. ALD soveltuu hyvin membraanien modifiointiin, koska kaasumaiset prekursorit leviävät tasaisesti membraanin huokosiin. Membraanien pinnoittamisella pyritään vaikuttamaan, selektiivisyyteen, hydrofiilisyyteen, liuotinkestävyyteen, huokoskokoon ja sen jakaumaan. Lisäksi membraaneja voidaan pinnoittaa katalyyttisillä ohutkalvoilla, mikä on tärkeää nanoreaktoreiden kehityksen kannalta. ALD:llä voidaan pinnoittaa esimerkiksi terästä, ja vähentää täten teräksen korroosiota. Puolijohtavia metallioksideja voidaan käyttää kaasunilmaisimina, joiden valmistuksessa ALD:n tarkkuudesta on suurta hyötyä.
Resumo:
View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.
Resumo:
Planar, large area, position sensitive silicon detectors are widely utilized in high energy physics research and in medical, computed tomography (CT). This thesis describes author's research work relating to development of such detector components. The key motivation and objective for the research work has been the development of novel, position sensitive detectors improving the performance of the instruments they are intended for. Silicon strip detectors are the key components of barrel-shaped tracking instruments which are typically the innermost structures of high energy physics experimental stations. Particle colliders such as the former LEP collider or present LHC produce particle collisions and the silicon strip detector based trackers locate the trajectories of particles emanating from such collisions. Medical CT has become a regular part of everyday medical care in all developed countries. CT scanning enables x-ray imaging of all parts of the human body with an outstanding structural resolution and contrast. Brain, chest and abdomen slice images with a resolution of 0.5 mm are possible and latest CT machines are able to image whole human heart between heart beats. The two application areas are presented shortly and the radiation detection properties of planar silicon detectors are discussed. Fabrication methods and preamplifier electronics of the planar detectors are presented. Designs of the developed, large area silicon detectors are presented and measurement results of the key operating parameters are discussed. Static and dynamic performance of the developed silicon strip detectors are shown to be very satisfactory for experimental physics applications. Results relating to the developed, novel CT detector chips are found to be very promising for further development and all key performance goals are met.
Resumo:
Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). In Argentina, where a program to eradicate EBL has been introduced, sensitive and reliable diagnosis has attained high priority. Although the importance of the agar gel immunodiffusion test remains unchanged for routine work, an additional diagnostic technique is necessary to confirm cases of sera with equivocal results or of calves carrying maternal antibodies.Utilizing a nested shuttle polymerase chain reaction, the proviral DNA was detected from cows experimentally infected with as little as 5 ml of whole blood from BLV seropositive cows that were nonetheless normal in haematological terms. It proved to be a very sensitive technique, since it rapidly revealed the presence of the provirus, frequently at 2 weeks postinoculation and using a two-round procedure of nested PCR taking only 3 hours. Additionally, the primers used flanked a portion of the viral genome often employed to differentiate BLV type applying BamHI digestion. It is concluded that this method might offer a highly promising diagnostic tool for BLV infection.
Resumo:
The paper is devoted to study specific aspects of heat transfer in the combustion chamber of compression ignited reciprocating internal combustion engines and possibility to directly measure the heat flux by means of Gradient Heat Flux Sensors (GHFS). A one – dimensional single zone model proposed by Kyung Tae Yun et al. and implemented with the aid of Matlab, was used to obtain approximate picture of heat flux behavior in the combustion chamber with relation to the crank angle. The model’s numerical output was compared to the experimental results. The experiment was accomplished by A. Mityakov at four stroke diesel engine Indenor XL4D. Local heat fluxes on the surface of cylinder head were measured with fast – response, high – sensitive GHFS. The comparison of numerical data with experimental results has revealed a small deviation in obtained heat flux values throughout the cycle and different behavior of heat flux curve after Top Dead Center.
Resumo:
Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP) assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.
Resumo:
Potentiometric ion sensors are a very important subgroup of electrochemical sensors, very attractive for practical applications due to their small size, portability, low-energy consumption, relatively low cost and not changing the sample composition. They are investigated by the researchers from many fields of science. The continuous development of this field creates the necessity for a detailed description of sensor response and the electrochemical processes important in the practical applications of ion sensors. The aim of this thesis is to present the existing models available for the description of potentiometric ion sensors as well as their applicability and limitations. This includes the description of the diffusion potential occurring at the reference electrodes. The wide range of existing models, from most idealised phase boundary models to most general models, including migration, is discussed. This work concentrates on the advanced modelling of ion sensors, namely the Nernst-Planck-Poisson (NPP) model, which is the most general of the presented models, therefore the most widely applicable. It allows the modelling of the transport processes occurring in ion sensors and generating the potentiometric response. Details of the solution of the NPP model (including the numerical methods used) are shown. The comparisons between NPP and the more idealized models are presented. The applicability of the model to describe the formation of diffusion potential in reference electrode, the lower detection limit of both ion-exchanger and neutral carrier electrodes and the effect of the complexation in the membrane are discussed. The model was applied for the description of both types of electrodes, i.e. with the inner filling solution and solidcontact electrodes. The NPP model allows the electrochemical methods other than potentiometry to be described. Application of this model in Electrochemical Impedance Spectroscopy is discussed and a possible use in chrono-potentiometry is indicated. By combining the NPP model with evolutionary algorithms, namely Hierarchical Genetic Strategy (HGS), a novel method allowing the facilitation of the design of ion sensors was created. It is described in detail in this thesis and its possible applications in the field of ion sensors are indicated. Finally, some interesting effects occurring in the ion sensors (i.e. overshot response and influence of anionic sites) as well as the possible applications of NPP in biochemistry are described.
Resumo:
The irrigation is a technique developed to supply the hydric needs of the plants. The use of the water should be optimized so that the culture just has enough for its growth, avoiding waste. The objective of this work was to characterize the behavior of capacitive sensors of humidity to monitor the moisture in the soils. In first instance, it was appraised sensors with dielectric built of synthetic pomes stone (Rd = 0,4 and Rd = 0,8) and of soil samples (Rd = 0,8 and Rd = 1,0), being the Rd parameter a geometric factor that relates the distance between the capacitor plates with radius of the plates. For the calibration, the sensors were installed in PVC recipient of cylindrical shape, filled with soil. The set (sensor and soil) was humidified by capillary effect and submitted by a natural drying very slowly. The parameter readings were taken daily, which allowed obtain the curves relating the humidity percentage, expressed in terms of dry weight, with the output voltage fort the sensor. The experiments were performed in sand soil and in dark red latossolo. The obtained results allowed to infer that the behavior of the sensor has a specific feature for each type of soil, being, therefore, necessary to develop a own calibration curve for the sensor, when used in soil with specific characteristic.
Resumo:
The use of water-sensitive papers is an important tool for assessing the quality of pesticide application on crops, but manual analysis is laborious and time-consuming. Thus, this study aimed to evaluate and compare the results obtained from four software programs for spray droplet analysis in different scanned images of water-sensitive papers. After spraying, papers with four droplet deposition patterns (varying droplet spectra and densities) were analyzed manually and by means of the following computer programs: CIR, e-Sprinkle, DepositScan and Conta-Gotas. The diameter of the volume and number medians and the number of droplets per target area were studied. There is a strong correlation between the values measured using the different programs and the manual analysis, but there is a great difference between the numerical values measured for the same paper. Thus, it is not advisable to compare results obtained from different programs.
Resumo:
We studied the relationship between alpha- and beta-adrenergic agonists and the activity of carbonic anhydrase I and II in erythrocyte, clinical and vessel studies. Kinetic studies were performed. Adrenergic agonists increased erythrocyte carbonic anhydrase as follows: adrenaline by 75%, noradrenaline by 68%, isoprenaline by 55%, and orciprenaline by 62%. The kinetic data indicated a non-competitive mechanism of action. In clinical studies carbonic anhydrase I from erythrocytes increased by 87% after noradrenaline administration, by 71% after orciprenaline and by 82% after isoprenaline. The increase in carbonic anhydrase I paralleled the increase in blood pressure. Similar results were obtained in vessel studies on piglet vascular smooth muscle. We believe that adrenergic agonists may have a dual mechanism of action: the first one consists of a catecholamine action on its receptor with the formation of a stimulus-receptor complex. The second mechanism proposed completes the first one. By this second component of the mechanism, the same stimulus directly acts on the carbonic anhydrase I isozyme (that might be functionally coupled with adrenergic receptors), so that its activation ensures an adequate pH for stimulus-receptor coupling for signal transduction into the cell, resulting in vasoconstriction.