945 resultados para Secretory Immunity
Resumo:
This study investigated the immunotherapeutic potential of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride immuno-modulator (P-MAPA) on canine visceral leishmaniasis. Twenty mongrel dogs presenting clinical symptoms compatible with leishmaniasis and diagnosis confirmed by the detection of anti-leishmania antibodies were studied. Ten dogs received 15 doses of the immunomodulator (2.0mg/kg) intramuscularly, and 10 received saline as a placebo. Skin and peripheral blood samples were collected following administration of the immunomodulator. The groups were followed to observe for clinical signals of remission; parasite load in the skin biopsies using real-time PCR, the cytokines IL-2, IL-10 and IFN-γ in the supernatant of peripheral blood mononuclear cells stimulated in vitro with either total promastigote antigen or phytohemagglutinin measured by capture ELISA, and changes in CD4+ and CD8+ T cell subpopulations evaluated by flow cytometry. Comparison between the groups showed that treatment with the immunomodulator promoted improvement in clinical signs and a significant reduction in parasite load in the skin. In peripheral blood mononuclear cell cultures, supernatants showed a decrease in IL-10 levels and an increase in IL-2 and IFN-γ. An increase in CD8+ T cells was observed in peripheral blood. In addition, the in vitro leishmanicidal action of P-MAPA was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and no leishmanicidal activity was detected. These findings suggest that P-MAPA has potential as an immunotherapeutic drug in canine visceral leishmaniasis, since it assists in reestablishing partial immunocompetence of infected dogs. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The mandibular condyle from 20-day-old rats was examined in the electron microscope with particular attention to intracellular secretory granules and extracellular matrix. Moreover, type II collagen was localized by an immunoperoxidase method. The condyle has been divided into five layers: (1) the most superficial, articular layer, (2) polymorphic cell layer, (3) flattened cell layer, (4) upper hypertrophic, and (5) lower hypertrophic cell layers. In the articular layer, the cells seldom divide, but in the polymorphic layer and upper part of the flattened cell layer, mitosis gives rise to new cells. In these layers, cells produce two types of secretory granules, usually in distinct stacks of the Golgi apparatus; type a, cylindrical granules, in which 300-nm-long threads are packed in bundles which appear lucent after formaldehyde fixation; and type b, spherical granules loaded with short, dotted filaments. The matrix is composed of thick banded lucent fibrils in a loose feltwork of short, dotted filaments. The cells arising from mitosis undergo endochondral differentiation, which begins in the lower part of the flattened cell layer and is completed in the upper hypertrophic cell layer; it is followed by gradual cell degeneration in the lower hypertrophic cell layer. The cells produce two main types of secretory granules: type b as above; and type c, ovoid granules containing 300-nm-long threads associated with short, dotted filaments. A possibly different secretory granule, type d, dense and cigar-shaped, is also produced. The matrix is composed of thin banded fibrils in a dense feltwork. In the matrix of the superficial layers, the lucency of the fibrils indicated that they were composed of collagen I, whereas the lucency of the cylindrical secretory granules suggested that they transported collagen I precursors to the matrix. Moreover, the use of ruthenium red indicated that the feltwork was composed of proteoglycan; the dotted filaments packed in spherical granules were similar to, and presumably the source of, the matrix feltwork. The superficial layers did not contain collagen II and were collectively referred to as perichondrium. In the deep layers, the ovoid secretory granules displayed collagen II antigenicity and were likely to transport precursors of this collagen to the matrix, where it appeared in the thin banded fibrils. That these granules also carried proteoglycan to the matrix was suggested by their content of short dotted filaments. Thus the deep layers contained collagen II and proteoglycan as in cartilage; they were collectively referred to as the hyaline cartilage region.
Resumo:
The use of amoxicillin during early childhood has been associated with molar incisor hypomineralization. The objective of this study was to determine whether the use of amoxicillin interferes with enamel development, during secretion and early mineralization stages. Fifteen pregnant rats were randomly assigned to three groups that received physiological solution (sham group), 100 mg/kg/day amoxicillin (A100G), and 500 mg/kg/day amoxicillin (A500G). After birth, the pups in each group received the same treatment until post-natal day 7 or 12. The upper first molars were analyzed histomorphometrical and immunostaining with amelogenin on day 7, and MMP-20 on day 12 was performed using a semiquantitative method (H-score). At 7 days, several vacuolar structures were observed in the ameloblasts in the A100G and A500G groups. A significant reduction of the enamel thickness (P < 0.001) was found in amoxicillin-treated rats compared with the sham group. Significant differences were not observed in enamel thickness (P > 0.05) between the groups of 12-day-old rats. Moreover, significant differences were not observed in the number of amelogenin- and MMP-20-immunolabeled ameloblasts (P > 0.05) between groups. The present results suggest that amoxicillin interferes with the initial stages of amelogenesis by causing structural changes in the ameloblasts and a reduction of the enamel matrix.