429 resultados para Sealing.
Resumo:
Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.
Resumo:
This thesis focuses on the investigation of the abrasion resistance of fibre reinforced concrete floors at both the macro and micro levels. A literature review of the available literature concerning subjects allied to the current project is included. This highlights themes relevant to wear mechanisms and the factors influencing it: factors that affect the abrasion resistance of concrete and several test methods for assessing it; and the historical development of fibres and the properties of different fibre types and their influence on concrete. Three accelerated abrasion testers were compared and critically discussed for their suitability for assessing the abrasion resistance of concrete floors. Based on the experimental findings one accelerated abrasion apparatus was selected as more appropriate to be used for carrying out the main investigations. The laboratory programme that followed was undertaken to investigate the influence of various material and construction factors on abrasion resistance. These included mix variations (w/c ratio), fibre reinforcement, geometry, type and volume, curing method and superplasticizing agents. The results clearly show that these factors significantly affected abrasion resistance and several mechanisms were presumed to explain and better understand these observations. To verify and understand these mechanisms that are accountable for the breakdown of concrete slabs, the same concrete specimens that were used for the macro-study, were also subjected to microstructutural investigations using techniques such as Microhardness examination, Mercury intrusion porosimetry and Petrographic examination. It has been found that the abrasion resistance of concrete is primarily dependent on the microstructure and porosity of the concrete nearest to the surface. The feasibility of predicting the abrasion resistance of fibre reinforced concrete floors by indirect and non-destructive methods was investigated using five methods that have frequently been used for assessing the quality of concrete. They included the initial surface absorption test, the impact test, ball cratering, the scratch test and the base hardness test. The impact resistance (BRE screed tester) and scratch resistance (Base hardness tester) were found to be the most sensitive to factors affecting abrasion resistance and hence are considered to be the most appropriate testing techniques. In an attempt to develop an appropriate method for assessing the abrasion resistance of heavy-duty industrial concrete floors, it was found that the presence of curing/sealing compound on the concrete surface at the time of accelerated abrasion testing produces inappropriate results. A preliminary investigation in the direction of modifying the Aston accelerated abrasion tester has been carried out and a more aggressive head has been developed and is pending future research towards standardisation.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
A successful and useful treatment for end-stage heart failure is Left ventricular assist device (LVAD). An important part - a hydrodynamically suspended impeller exposed to corrosive conditions, required to sealed hermetically into micro packages. Laser beam welded (LBW) Ti6Al4V alloy has been adopted in anti-corrosion micro packages for the impeller of a (LVAD). Thin and narrow welds were required for such medical equipment. Pulsed Nd:YAG welding was successfully adopted as sealing method for the impeller. ©2011 IEEE.
Resumo:
Equality as a principle and as a legal rule, integrates brazilian constitutional order since the Constitution of 1891, constituting the target always be sought, built and promoted by the state and society as a whole. Also e xs urgem for protection of equality and non - discrimination, declarations and international treaties, mostly ratified by Brazil. The international protection of human beings with intrinsic value began in the UN Declaration of 1948, which declared the equality of all men in rights and dignity, followed by more specific international documents, in a growing movement of ratification of international standards protection of human rights occurs after the atrocities during the Second World War. Within the Internation al Labour Organisation (ILO), the theme of equality and non - discrimination in employment relationships integrates one of its main conventions, to No. 111, ratified by Brazil since 1965, which aims to eliminate discrimination in respect of employment and oc cupation. In this context, lies the collective bargaining work, with her normative instruments arising from the collective agreement and the agreement recognized constitutionally and with full ability to create and establish standards and conditions for de tails of suitable work for each occupational category and economic having the unions the power and duty to use them as a means of effecting the postulates of equality and non - discrimination in employment relationships, filling gaps in state law and / or su pplementing it, molding them to existing events in the capital - job. Driven by greater freedom contained in the Constitution of 1988, trading, and with it, the private collective autonomy, in fact, have included the issue of equality and the right to differ ence between clauses created, scheduled to affirmative action and sealing exclusionary conduct, and reported some positive outcomes, such as greater diversity in work and training followed by admission of persons with disabilities environment. These attitu des of union entities and employers should be broadened because corroborate the fulfillment of constitutional requirements for compliance with the international declarations, adapting them to the reality of labor relations and contributing to the construct ion of equality in the pursuit of social justice with the recognition of the right to be different with respect to the inherent dignity of the human condition.
Resumo:
Micro cracking during service is a critical problem in polymer structures and polymer composite materials. Self-healing materials are able to repair micro cracks, thus their preventing propagation and catastrophic failure of structural components. One of the self-healing approaches presented in the literature involves the use of solvents which react with the polymer. The objective of this research is to investigate a procedure to encapsulate solvents in halloysite nanotubes to promote self-healing ability in epoxy. Healing is triggered by crack propagation through embedded nanotubes in the polymer, which then release the liquid sovent into the crack plane. Two solvents were considered in this work: dimethylsulfoxide (DMSO) and nitrobenzene. The nanotubes were coated using the layer-by-layer technique of oppositely charged polyelectrolytes: cetyltrimethylammonium bromide (CTAB) and sodium polyacrylate. Solvent encapsulation was verified by X-ray diffraction (XRD), Fourier transform infrared (FTIR), analysis thermogravimetry (TGA), adsorption and desorption of nitrogen and scanning electron microscopy (SEM). The introduction of the solvent DMSO into the cavity of the nanotubes was confirmed by the techniques employed. However, was not verified with nitrobenzene only promoted clay aggregation. The results suggest that the CTAB reacted with the halloystite to form a sealing layer on the surface of the nanotubes, thus encapsulating the solvent, while this was not verified using sodium polyacrylate.
Resumo:
The final quality of the works accomplished by the building construction industry depends directly on the quality of the materials supplied and used during all their phases of execution. The federal government participation and several state programs have established conditions to stimulate and require the increment of the quality level in the building construction industry´s product chain. These programs aim at the product conformity to the technical standards. Within this context, the evaluation program of the ceramic product conformity in Rio Grande do Norte state is assessing the conformity degree to Brazilian Technical Standards of ceramic bricks and tiles made in the ceramic production area in the state. In this work, is determine the degree of conformity of the sealing ceramic bricks made by some companies in different areas of the state, such as Assú, São Gonçalo do Amarante, Apodi, Parelhas, São José do Mipibu e Macaíba. Using the technical standards as a point of reference, we attempted to reproduce in the laboratory the experimental procedures to the analysis execution, according to the specifications. It was possible to determine that none of the evaluated samples are in strict conformity with the current technical standards, what reflects the real situation of the products available on the market.
Resumo:
The ceramics industry generates waste at various stages of that process, defective products, waste from burning solid fuels, among others. This waste is dumped in landfills, garbage dumps or directly on roads, which has a negative environmental impact. This paper presents a study to incorporate the waste of algaroba wood and chamote (scrap pieces of ceramic already sintered), in to the ceramic material for making sealing blocks. The methodological procedures consist in the characterization of chemical and mineralogical residues, raw materials, and physical-mechanical of the formulations of mixes with clay, silt and waste. By pressing test pieces were produced using a pressure of 200 kgf/cm², varying compositions in the range of 0%, 5%, 10% and 15% by weight of residue. The sintering was performed in a muffle furnace, with the temperature levels of 850 ° C, 900 ° C, 950 ° C, 1000 ° C and 1050 ° C. The evaluated physical and mechanical properties were: Water Absorption, Linear Shrinkage Burning, Apparent Porosity, Apparent Density and Mechanical Resistance to Flexion. Analysis was carried out by Scanning Electron Microscopy on fracture surfaces of the specimens. Evaluation of linear shrinkage property drying and firing , water absorption and mechanical resistance to compression of the sealing blocks 5% wood ash residue, sintered at 900 °C hold temperature in the laboratory the products manufactured on an industrial scale. The main results, it was found on the viability of using the residues of algaroba wood and to confer refractory properties of the ceramic product. The main results, it was concluded feasibility of using the ash residues algaroba wood to impart refractory properties to the ceramic product and the residue of chamote, being derived from the own ceramic product not interfere with the properties, when used in a percentage of up to 5%.Since the residue of chamote being derived from the ceramic product itself had no effect on the properties. Studies in the laboratory have shown that the incorporation of up to 5% of these residues may be adopted as an alternative technology to reduce the environmental impact caused by the industrial sector, without compromising the final properties of the material, since the results on an industrial scale showed absorption values 11.66 and 11.74 of water and waste products respectively, within the parameters of NBR - 15,270, since the mechanical strength was 1.25 MPa and 0.94 MPa respectively for products with and without residue, lower than the minimum required by the technical standard that is 1.5 MPa.
Resumo:
The ceramics industry generates waste at various stages of that process, defective products, waste from burning solid fuels, among others. This waste is dumped in landfills, garbage dumps or directly on roads, which has a negative environmental impact. This paper presents a study to incorporate the waste of algaroba wood and chamote (scrap pieces of ceramic already sintered), in to the ceramic material for making sealing blocks. The methodological procedures consist in the characterization of chemical and mineralogical residues, raw materials, and physical-mechanical of the formulations of mixes with clay, silt and waste. By pressing test pieces were produced using a pressure of 200 kgf/cm², varying compositions in the range of 0%, 5%, 10% and 15% by weight of residue. The sintering was performed in a muffle furnace, with the temperature levels of 850 ° C, 900 ° C, 950 ° C, 1000 ° C and 1050 ° C. The evaluated physical and mechanical properties were: Water Absorption, Linear Shrinkage Burning, Apparent Porosity, Apparent Density and Mechanical Resistance to Flexion. Analysis was carried out by Scanning Electron Microscopy on fracture surfaces of the specimens. Evaluation of linear shrinkage property drying and firing , water absorption and mechanical resistance to compression of the sealing blocks 5% wood ash residue, sintered at 900 °C hold temperature in the laboratory the products manufactured on an industrial scale. The main results, it was found on the viability of using the residues of algaroba wood and to confer refractory properties of the ceramic product. The main results, it was concluded feasibility of using the ash residues algaroba wood to impart refractory properties to the ceramic product and the residue of chamote, being derived from the own ceramic product not interfere with the properties, when used in a percentage of up to 5%.Since the residue of chamote being derived from the ceramic product itself had no effect on the properties. Studies in the laboratory have shown that the incorporation of up to 5% of these residues may be adopted as an alternative technology to reduce the environmental impact caused by the industrial sector, without compromising the final properties of the material, since the results on an industrial scale showed absorption values 11.66 and 11.74 of water and waste products respectively, within the parameters of NBR - 15,270, since the mechanical strength was 1.25 MPa and 0.94 MPa respectively for products with and without residue, lower than the minimum required by the technical standard that is 1.5 MPa.
Resumo:
The uncontrolled growth of most Brazilian cities is not accompanied by the development of urban infrastructure. With increasing soil sealing, runoff and decreased infiltration volume, impacts on water resources and on population of the areas affected by urban growth are inevitable. This study aims to evaluate the use and occupation of a watershed and analyze the drainage system in order to control the impact using tools to integrate urban development with the drainage of rainwater in an important watershed in the Natal City, Rio Grande do Norte State. The study involved the characterization of the basin XII.4 on the land use and occupation, for the years 2005 and 2014. With the application of SWMM model was possible to analyze the impacts caused by the urbanization process in the existing drainage system, showing the two years analyzed have their areas very close to percentage saturation of impervious areas. Although the region is still predominantly single family residential, suffers increasing verticalization of mainly commercial buildings. The drainage system is inefficient for the area's needs by the year 2005. The drainage system was also tested for four variations of land use by developing scenarios. Scenario 1 is related to the year 2014, considered current. Scenario 2 was adopted the maximum rate of 80% for land use, allowed for the Natal City. Scenario 3 gives the critical condition of land use, with the area 100% impervious. Scenario 4 is applied to the existence of LID (Low Impact Device). The scenarios analysis showed that all indicate deficiency at some point of the drainage system as a result of the high degree of occupation of the area that generate higher flows than the initial drainage system capacity. With the study it became clear that the adoption of non-structural tools are effective in reducing flooding and improving the drainage system capacity.
Resumo:
The uncontrolled growth of most Brazilian cities is not accompanied by the development of urban infrastructure. With increasing soil sealing, runoff and decreased infiltration volume, impacts on water resources and on population of the areas affected by urban growth are inevitable. This study aims to evaluate the use and occupation of a watershed and analyze the drainage system in order to control the impact using tools to integrate urban development with the drainage of rainwater in an important watershed in the Natal City, Rio Grande do Norte State. The study involved the characterization of the basin XII.4 on the land use and occupation, for the years 2005 and 2014. With the application of SWMM model was possible to analyze the impacts caused by the urbanization process in the existing drainage system, showing the two years analyzed have their areas very close to percentage saturation of impervious areas. Although the region is still predominantly single family residential, suffers increasing verticalization of mainly commercial buildings. The drainage system is inefficient for the area's needs by the year 2005. The drainage system was also tested for four variations of land use by developing scenarios. Scenario 1 is related to the year 2014, considered current. Scenario 2 was adopted the maximum rate of 80% for land use, allowed for the Natal City. Scenario 3 gives the critical condition of land use, with the area 100% impervious. Scenario 4 is applied to the existence of LID (Low Impact Device). The scenarios analysis showed that all indicate deficiency at some point of the drainage system as a result of the high degree of occupation of the area that generate higher flows than the initial drainage system capacity. With the study it became clear that the adoption of non-structural tools are effective in reducing flooding and improving the drainage system capacity.
Resumo:
Few symbols of 1950s-1960s America remain as central to our contemporary conception of Cold War culture as the iconic ranch-style suburban home. While the house took center stage in the Nixon/Khrushchev kitchen debates as a symbol of modern efficiency and capitalist values, its popularity depended largely upon its obvious appropriation of vernacular architecture from the 19th century, those California haciendas and Texas dogtrots that dotted the American west. Contractors like William Levitt modernized the historical common houses, hermetically sealing their porous construction, all while using the ranch-style roots of the dwelling to galvanize a myth of an indigenous American culture. At a moment of intense occupational bureaucracy, political uncertainty and atomized social life, the rancher gave a self-identifying white consumer base reason to believe they could master their own plot in the expansive frontier. Only one example of America’s mid-century love affair with commodified vernacular forms, the ranch-style home represents a broad effort on the part of corporate and governmental interest groups to transform the vernacular into a style that expresses a distinctly homogenous vision of American culture. “Other than a Citizen” begins with an anatomy of that transformation, and then turns to the work of four poets who sought to reclaim the vernacular from that process of standardization and use it to countermand the containment-era strategies of Cold War America.
In four chapters, I trace references to common speech and verbal expressivity in the poetry and poetic theory of Charles Olson, Robert Duncan, LeRoi Jones/Amiri Baraka and Gwendolyn Brooks, against the historical backdrop of the Free-Speech Movement and the rise of mass-culture. When poets frame nonliterary speech within the literary page, they encounter the inability of writing to capture the vital ephemerality of verbal expression. Rather than treat this limitation as an impediment, the writers in my study use the poem to dramatize the fugitivity of speech, emphasizing it as a disruptive counterpoint to the technologies of capture. Where critics such as Houston Baker interpret the vernacular strictly in terms of resistance, I take a cue from the poets and argue that the vernacular, rooted etymologically at the intersection of domestic security and enslaved margin, represents a gestalt form, capable at once of establishing centralized power and sparking minor protest. My argument also expands upon Michael North’s exploration of the influence of minstrelsy and regionalism on the development of modernist literary technique in The Dialect of Modernism. As he focuses on writers from the early 20th century, I account for the next generation, whose America was not a culturally inferior collection of immigrants but an imperial power, replete with economic, political and artistic dominance. Instead of settling for an essentially American idiom, the poets in my study saw in the vernacular not phonetic misspellings, slang terminology and fragmented syntax, but the potential to provoke and thereby frame a more ethical mode of social life, straining against the regimentation of citizenship.
My attention to the vernacular argues for an alignment among writers who have been segregated by the assumption that race and aesthetics are mutually exclusive categories. In reading these writers alongside one another, “Other than a Citizen” shows how the avant-garde concepts of projective poetics and composition by field develop out of an interest in black expressivity. Conversely, I trace black radicalism and its emphasis on sociality back to the communalism practiced at the experimental arts college in Black Mountain, North Carolina, where Olson and Duncan taught. In pressing for this connection, my work reveals the racial politics embedded within the speech-based aesthetics of the postwar era, while foregrounding the aesthetic dimension of militant protest.
Not unlike today, the popular rhetoric of the Cold War insists that to be a citizen involves defending one’s status as a rightful member of an exclusionary nation. To be other than a citizen, as the poets in my study make clear, begins with eschewing the false certainty that accompanies categorical nominalization. In promoting a model of mutually dependent participation, these poets lay the groundwork for an alternative model of civic belonging, where volition and reciprocity replace compliance and self-sufficiency. In reading their lines, we become all the more aware of the cracks that run the length of our load-bearing walls.
Resumo:
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.
Resumo:
Recent revisions of the geological time scale by Kent and Gradstein (in press) suggest that, on the average, Cretaceous magnetic anomalies are approximately 10 m.y. older than in Larson and Hilde's (1975) previous time scale. These revised basement ages change estimates for the duration of alteration in the ocean crust, based on the difference between secondary-mineral isochron ages and magnetic isochron-crustal ages, from 3 to approximately 13 m.y. In addition to the revised time scale, Burke et al.'s (1982) new data on the temporal variation of 87Sr/86Sr in seawater allow a better understanding of the timing of alteration and more realistic determinations of water/rock ratios during seawater-basalt interaction. Carbonates from all DSDP sites which reached Layer 2 of Atlantic crust (Sites 105, 332, 417, and 418) are deposited within 10-15 m.y. of crustal formation from solutions with 87Sr/86Sr ratios identical to unaltered or contemporaneous seawater. Comparisons of the revised seawater curve with the 87Sr/86Sr of basement carbonates is consistent with a duration of approximately 10-15 m.y. for alteration in the ocean crust. Our preliminary Sr and 87Sr/86Sr data for carbonates from Hole 504B, on 5.9-m.y.-old crust south of the Costa Rica Rift, suggest that hydrous solutions from which carbonates precipitated contained substantial amounts of basaltic Sr. For this reason, carbonate 87Sr/86Sr cannot be used to estimate the duration of alteration at this site. A basalt-dominated alteration environment at Hole 504B is consistent with heat-flow evidence which indicates rapid sediment burial of crust at the Costa Rica Rift, sealing it from access by seawater and resulting in unusually low water/rock ratios during alteration.