988 resultados para Scheduling Problems
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Probability and Statistics—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Probability and Statistics. Descriptive statistics are presented first, and probability is reviewed secondly. Discrete and continuous distributions are presented. Sample and estimation with hypothesis testing are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
Linear Algebra—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Linear Algebra. Vector spaces are presented first, and linear transformations are reviewed secondly. Matrices and Linear systems are presented. Determinants and Basic geometry are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
The present generation of eLearning platforms values the interchange of learning objects standards. Nevertheless, for specialized domains these standards are insufficient to fully describe all the assets, especially when they are used as input for other eLearning services. To address this issue we extended an existing learning objects standard to the particular requirements of a specialized domain, namely the automatic evaluation of programming problems. The focus of this paper is the definition of programming problems as learning objects. We introduce a new schema to represent metadata related to automatic evaluation that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the evaluation engine; or the roles of different assets - tests cases, program solutions, etc. This new schema is being used in an interoperable repository of learning objects, called crimsonHex.
Resumo:
Standards for learning objects focus primarily on content presentation. They were already extended to support automatic evaluation but it is limited to exercises with a predefined set of answers. The existing standards lack the metadata required by specialized evaluators to handle types of exercises with an indefinite set of solutions. To address this issue we extended existing learning object standards to the particular requirements of a specialized domain. We present a definition of programming problems as learning objects that is compatible both with Learning Management Systems and with systems performing automatic evaluation of programs. The proposed definition includes metadata that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the valuation engine; and the roles of different assets - tests cases, program solutions, etc. We present also the EduJudge project and its main services as a case study on the use of the proposed definition of programming problems as learning objects.
Resumo:
This paper is on the self-scheduling problem for a thermal power producer taking part in a pool-based electricity market as a price-taker, having bilateral contracts and emission-constrained. An approach based on stochastic mixed-integer linear programming approach is proposed for solving the self-scheduling problem. Uncertainty regarding electricity price is considered through a set of scenarios computed by simulation and scenario-reduction. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. A requirement on emission allowances to mitigate carbon footprint is modelled by a stochastic constraint. Supply functions for different emission allowance levels are accessed in order to establish the optimal bidding strategy. A case study is presented to illustrate the usefulness and the proficiency of the proposed approach in supporting biding strategies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.
Resumo:
Nowadays, many real-time operating systems discretize the time relying on a system time unit. To take this behavior into account, real-time scheduling algorithms must adopt a discrete-time model in which both timing requirements of tasks and their time allocations have to be integer multiples of the system time unit. That is, tasks cannot be executed for less than one time unit, which implies that they always have to achieve a minimum amount of work before they can be preempted. Assuming such a discrete-time model, the authors of Zhu et al. (Proceedings of the 24th IEEE international real-time systems symposium (RTSS 2003), 2003, J Parallel Distrib Comput 71(10):1411–1425, 2011) proposed an efficient “boundary fair” algorithm (named BF) and proved its optimality for the scheduling of periodic tasks while achieving full system utilization. However, BF cannot handle sporadic tasks due to their inherent irregular and unpredictable job release patterns. In this paper, we propose an optimal boundary-fair scheduling algorithm for sporadic tasks (named BF TeX ), which follows the same principle as BF by making scheduling decisions only at the job arrival times and (expected) task deadlines. This new algorithm was implemented in Linux and we show through experiments conducted upon a multicore machine that BF TeX outperforms the state-of-the-art discrete-time optimal scheduler (PD TeX ), benefiting from much less scheduling overheads. Furthermore, it appears from these experimental results that BF TeX is barely dependent on the length of the system time unit while PD TeX —the only other existing solution for the scheduling of sporadic tasks in discrete-time systems—sees its number of preemptions, migrations and the time spent to take scheduling decisions increasing linearly when improving the time resolution of the system.
Resumo:
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed, it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface typically contains information about the amount of computing capacity needed by the application. For multiprocessor platforms, the interface should also present information about the degree of parallelism. Several interface proposals have recently been put forward in various research works. However, those interfaces are either too complex to be handled or too pessimistic. In this paper we propose the generalized multiprocessor periodic resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We then derive a method to compute the interface from the application specification. This method has been implemented in Matlab routines that are publicly available.
Resumo:
Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.