893 resultados para Scar tissue
Resumo:
Calomys callosus Rengger, 1830 (Rodentia: Cricetidae) is a mouse-like South American wild rodent, which is permissive to Schistosoma mansoni infection. In this paper we studied the effect of schistosomal infection in C. callosus mesenteric and omental milky spots (MS), subsidiary foci of coelom-associated lymphomyeloid tissue (CALT), during the acute, transitional (acute to chronic), and chronic phases of the infection. MS were morphologically analyzed by histological methods, using brigthfield and confocal laser scanning microscopies. The MS of infected animals were mainly of lymphomyelocytic (42 to 90 days) and lymphoplasmacytic (160 days of infection) types and showed frequent presence of lymphoid follicles with germinal centers, plasmacytogenesis and plasmacytosis, mastocytosis, megakaryopoiesis, erythropoiesis and less pronounced eosinopoiesis. These results indicate that MS are a preferential site of germinal-center-dependent and independent plasmacytogenesis, and a bone marrow-like organ, committed with various cellular lineages. The consequence of C. callosus MS reactivity for schistosomal infection is still unknown and is under investigation.
Resumo:
Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.
Resumo:
PURPOSE: It is generally assumed that the biodistribution and pharmacokinetics of radiolabelled antibodies remain similar between dosimetric and therapeutic injections in radioimmunotherapy. However, circulation half-lives of unlabelled rituximab have been reported to increase progressively after the weekly injections of standard therapy doses. The aim of this study was to evaluate the evolution of the pharmacokinetics of repeated 131I-rituximab injections during treatment with unlabelled rituximab in patients with non-Hodgkin's lymphoma (NHL). METHODS: Patients received standard weekly therapy with rituximab (375 mg/m2) for 4 weeks and a fifth injection at 7 or 8 weeks. Each patient had three additional injections of 185 MBq 131I-rituximab in either treatment weeks 1, 3 and 7 (two patients) or weeks 2, 4 and 8 (two patients). The 12 radiolabelled antibody injections were followed by three whole-body (WB) scintigraphic studies during 1 week and blood sampling on the same occasions. Additional WB scans were performed after 2 and 4 weeks post 131I-rituximab injection prior to the second and third injections, respectively. RESULTS: A single exponential radioactivity decrease for WB, liver, spleen, kidneys and heart was observed. Biodistribution and half-lives were patient specific, and without significant change after the second or third injection compared with the first one. Blood T(1/2)beta, calculated from the sequential blood samples and fitted to a bi-exponential curve, was similar to the T(1/2) of heart and liver but shorter than that of WB and kidneys. Effective radiation dose calculated from attenuation-corrected WB scans and blood using Mirdose3.1 was 0.53+0.05 mSv/MBq (range 0.48-0.59 mSv/MBq). Radiation dose was highest for spleen and kidneys, followed by heart and liver. CONCLUSION: These results show that the biodistribution and tissue kinetics of 131I-rituximab, while specific to each patient, remained constant during unlabelled antibody therapy. RIT radiation doses can therefore be reliably extrapolated from a preceding dosimetry study.
Resumo:
AIM: Improving cerebral perfusion is an essential component of post-resuscitation care after cardiac arrest (CA), however precise recommendations in this setting are limited. We aimed to examine the effect of moderate hyperventilation (HV) and induced hypertension (IH) on non-invasive cerebral tissue oxygenation (SctO2) in patients with coma after CA monitored with near-infrared spectroscopy (NIRS) during therapeutic hypothermia (TH). METHODS: Prospective pilot study including comatose patients successfully resuscitated from out-of-hospital CA treated with TH, monitored with NIRS. Dynamic changes of SctO2 upon HV and IH were analyzed during the stable TH maintenance phase. HV was induced by decreasing PaCO2 from ∼40 to ∼30 mmHg, at stable mean arterial blood pressure (MAP∼70 mmHg). IH was obtained by increasing MAP from ∼70 to ∼90 mmHg with noradrenaline. RESULTS: Ten patients (mean age 69 years; mean time to ROSC 19 min) were studied. Following HV, a significant reduction of SctO2 was observed (baseline 74.7±4.3% vs. 69.0±4.2% at the end of HV test, p<0.001, paired t-test). In contrast, IH was not associated with changes in SctO2 (baseline 73.6±3.5% vs. 74.1±3.8% at the end of IH test, p=0.24). CONCLUSIONS: Moderate hyperventilation was associated with a significant reduction in SctO2, while increasing MAP to supra-normal levels with vasopressors had no effect on cerebral tissue oxygenation. Our study suggests that maintenance of strictly normal PaCO2 levels and MAP targets of 70mmHg may provide optimal cerebral perfusion during TH in comatose CA patients.
Resumo:
The basal sliding surfaces in large rockslides are often composed of several surfaces and possess a complex geometry. The exact morphology and location in three dimensions of the sliding surface remains generally unknown, in spite of extensive field and subsurface investigations, such as those at the Åknes rockslide (western Norway). This knowledge is crucial for volume estimations, failure mechanisms, and numerical slope stability modeling. This paper focuses on the geomorphologic characterization of the basal sliding surface of a postglacial rockslide scar in the vicinity of Åknes. This scar displays a stepped basal sliding surface formed by dip slopes of the gneiss foliation linked together by steeply dipping fractures. A detailed characterization of the rockslide scar by means of high-resolution digital elevation models permits statistical parameters of dip angle, spacing, persistence, and roughness of foliation surfaces and step fractures to be obtained. The characteristics are used for stochastic simulations of stepped basal sliding surfaces at the Åknes rockslide. These findings are compared with previous models based on geophysical investigations. This study discusses the investigation of rockslide scars and rock outcrops for a better understanding of potential rockslides. This work identifies possible basal sliding surface locations, which is a valuable input for volume estimates, design and location of monitoring instrumentation, and numerical slope stability modeling.
Resumo:
PCR detection of Trypanosoma cruzi in Rhodnius prolixus using fresh tissue or fecal drops on filter paper showed comparable results: 38.7% infection rate using the fresh tissue sample and 37.9% by dried fecal drop.
Resumo:
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous-based buffer for tissue section preparation before matrix-assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water-acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14-day mouse fetus whole-body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on-tissue MALDI analysis compared with solely conventional organic rinsing.
Resumo:
Draft Regulations for Consultation
Resumo:
Cutaneous biopsies (n = 94) obtained from 88 patients with American tegumentary leishmaniasis were studied by conventional and immunohistochemical techniques. Specimens were distributed as active lesions of cutaneous leishmaniasis (n = 53) (Group I), cicatricial lesions of cutaneous leishmaniasis (n = 35) (Group II) and suggestive scars of healed mucosal leishmaniasis patients (n = 6) (Group III). In addition, active cutaneous lesions of other etiology (n = 24) (Group C1) and cutaneous scars not related to leishmaniasis (n = 10) (Group C2) were also included in the protocol. Amastigotes in Group I biopsies were detected by routine histopathological exam (30.2%), imprint (28.2%), culture (43.4%), immunofluorescence (41.4%) and immunoperoxidase (58.5%) techniques; and by the five methods together (79.3%). In Group II, 5.7% of cultures were positive. Leishmanial antigen was also seen in the cytoplasm of macrophages and giant cells (cellular pattern), vessel walls (vascular pattern) and dermal nerves (neural pattern). Positive reaction was detected in 49 (92.5%), 20 (57%) and 4 (67%) biopsies of Groups I, II and III, respectively. Antigen persistency in cicatricial tissue may be related to immunoprotection or, on the contrary, to the development of late lesions. We suggest that the cellular, vascular and neural patterns could be applied in the immunodiagnosis of active and cicatricial lesions in which leishmaniasis is suspected.
Resumo:
Autotransplantation of spleen tissue has been done, in the past ten years, in children with schistosomiasis mansoni with bleeding varices. The purposes of this investigation were: (1) to study the morphology and function of the remnant spleen tissue; (2) to quantify the production of tuftsin; and (3) to assess the immune response to pneomococcal vaccine of these patients. Twenty three children, who underwent splenectomy and autologous implantation of spleen tissue into the greater omentum were included in this investigation. The average postoperative follow-up is five years. Splenosis was proved by colloid liver-spleen scans. Search for Howell-Jolly bodies assessed the filtration function. Tuftsin and the titer of pneumococcal antibodies were quantified by ELISA. Splenosis was evident in all children; however, it was insufficient in two. Howell-Jolly bodies were found only in these two patients. The mean tuftsin serum concentration (335.0 ± 29.8 ng/ml) was inside the normal range. The immune response to pneumococcal vaccination was adequate in 15 patients; intermediate in four; and inadequate in four. From the results the following conclusions can be drawn: splenosis was efficient in maintaining the filtration splenic function in more than 90% and produced tuftsin inside the range of normality. It also provided the immunologic splenic response to pneumococcal vaccination in 65% of the patients of this series.
Resumo:
Shigella, a Gram-negative invasive enteropathogenic bacterium responsible for bacillary dysentery, causes the rupture, invasion, and inflammatory destruction of the human colonic mucosa. We explored the mechanisms of protection mediated by Shigella LPS-specific secretory IgA (SIgA), the major mucosal Ab induced upon natural infection. Bacteria, SIgA, or SIgA-S. flexneri immune complexes were administered into rabbit ligated intestinal loops containing a Peyer's patch. After 8 h, localizations of bacteria, SIgA, and SIgA-S. flexneri immune complexes were examined by immunohistochemistry and confocal microscopy imaging. We found that anti-Shigella LPS SIgA, mainly via immune exclusion, prevented Shigella-induced inflammation responsible for the destruction of the intestinal barrier. Besides this luminal trapping, a small proportion of SIgA-S. flexneri immune complexes were shown to enter the rabbit Peyer's patch and were internalized by dendritic cells of the subepithelial dome region. Local inflammatory status was analyzed by quantitative RT-PCR using newly designed primers for rabbit pro- and anti-inflammatory mediator genes. In Peyer's patches exposed to immune complexes, limited up-regulation of the expression of proinflammatory genes, including TNF-alpha, IL-6, Cox-2, and IFN-gamma, was observed, consistent with preserved morphology. In contrast, in Peyer's patches exposed to Shigella alone, high expression of the same mediators was measured, indicating that neutralizing SIgA dampens the proinflammatory properties of Shigella. These results show that in the form of immune complexes, SIgA guarantees both immune exclusion and neutralization of translocated bacteria, thus preserving the intestinal barrier integrity by preventing bacterial-induced inflammation. These findings add to the multiple facets of the noninflammatory properties of SIgA.
Resumo:
The use of in situ techniques to detect DNA and RNA sequences has proven to be an invaluable technique with paraffin-embedded tissue. Advances in non-radioactive detection systems have further made these procedures shorter and safer. We report the detection of Trypanosoma cruzi, the causative agent of Chagas disease, via indirect and direct in situ polymerace chain reaction within paraffin-embedded murine cardiac tissue sections. The presence of three T. cruzi specific DNA sequences were evaluated: a 122 base pair (bp) sequence localized within the minicircle network, a 188 bp satellite nuclear repetitive sequence and a 177 bp sequence that codes for a flagellar protein. In situ hybridization alone was sensitive enough to detect all three T. cruzi specific DNA sequences.
Resumo:
Cell invasion targets specific tissues in physiological placental implantation and pathological metastasis, which raises questions about how this process is controlled. We compare dermis and endometrium capacities to support trophoblast invasion, using matching sets of human primary fibroblasts in a coculture assay with human placental explants. Substituting endometrium, the natural trophoblast target, with dermis dramatically reduces trophoblast interstitial invasion. Our data reveal that endometrium expresses a higher rate of the fibronectin (FN) extra type III domain A+ (EDA+) splicing isoform, which displays stronger matrix incorporation capacity. We demonstrate that the high FN content of the endometrium matrix, and not specifically the EDA domain, supports trophoblast invasion by showing that forced incorporation of plasma FN (EDA-) promotes efficient trophoblast invasion. We further show that the serine/arginine-rich protein serine/arginine-rich splicing factor 1 (SRSF1) is more highly expressed in endometrium and, using RNA interference, that it is involved in the higher EDA exon inclusion rate in endometrium. Our data therefore show a mechanism by which tissues can be distinguished, for their capacity to support invasion, by their different rates of EDA inclusion, linked to their SRSF1 protein levels. In the broader context of cancer pathology, the results suggest that SRSF1 might play a central role not only in the tumor cells, but also in the surrounding stroma.