884 resultados para SODIUM-FLUORIDE
Resumo:
The local structure of Na-Al-P-O-F glasses, prepared by a novel sol-gel route, was extensively investigated by advanced solid-state NMR techniques. Al-21{F-19} rotational echo double resonance (REDOR) results indicate that the F incorporated into aluminophosphate glass is preferentially bonded to octahedral Al units and results in a significant increase in the concentration of six-coordinated aluminum. The extent of Al-F and Al-O-P connectivities are quantified consistently by analyzing Al-27{P-31} and Al-21{F-19} REDOR NMR data. Two distinct types of fluorine species were identified and characterized by various F-19{Al-27}, F-19{Na-23}, and F-19{P-31} double resonance experiments, which were able to support peak assignments to bridging (Al-F-Al, -140 ppm) and terminal (Al-F, -170 ppm) units. On the basis of the detailed quantitative dipole-dipole coupling information obtained, a comprehensive structural model for these glasses is presented, detailing the structural speciation as a function of composition.
Resumo:
Effect of fluoride ions introduction on structural, OH- content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses have been investigated. Structure was investigated, indicating that fluoride has an important influence on the phonon density, maximum phonon energy of host glasses. With increasing fluoride content, the up-conversion luminescence intensity and quantum efficiencies increase notably, which could not be explained only by the maximum phonon energy change of host glasses. Our results show that, with the introduction of PbF2, the decrease of phonon density and OH- content contributes more to the enhanced up-conversion emissions than that of maximum phonon energy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The thermal stability and structure of RF-RF2-AIF(3)-Al(PO3)(3) fluorophosphate glasses were investigated. Analyses of infrared absorbance spectra and Raman spectra reveal that with increasing number of alkali and alkaline earth fluoride components, the sum of P-O-P bond and O-P-O bond increases and glass network is strengthened. Consequently, the inhibition to nucleation and crystallization processes is improved, which is proved by the increment of thermal stability factors AT and S determined by differential scanning calorimetry. In addition, it was found that LiF has poor ability to form glass in univalent alkali fluorides and MgF2 has comparative strong ability to form glass in bivalent alkaline earth fluorides. (c) 2006 Published by Elsevier B.V.
Resumo:
Er3+ doped aluminophosphate glasses with various Na2O/Li2O ratios were prepared at 1250 degrees C using a silica crucible to study mixed alkali effect (MAE). The effect of relative alkali content on glass transition temperature, crystallization temperature and thermal stability were investigated using differential scanning calorimetry (DSC). In addition, apparent activation energies for crystallization, E, were determined employing the Kissinger equation. The effect of Al2O3 content on the magnitude of MAE was also discussed. No mixed-alkali effect is observed on crystallization temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report spectral properties and thermal stability of Nd3+-doped InF3-based heavy-metal fluoride glasses. Fluoroindate glasses in the chemical compositions (in mol%) of (38-x)InF3-16BaF(2)-20ZnF(2)-20SrF(2)-3GdF(3)-1GaF(3-)2NaF-xNdF(3) (x = 0.1, 0.5, 1, 2, 3) have been prepared under a controlled atmosphere in a dry box. Strong UVblue upconversion emission from a green excitation wavelength has been observed and the involved mechanisms have been explained. Near-infrared emission occurs simultaneously upon excitation of the UV-blue upconversion emissions with a cw Ar(+)laser. The upconversion spectra have revealed four dominant emissions at 354, 380, 412 and 449 nm, which belong to the transitions of D-4(3/2) -> I-4(9/2), D-4(3/2) -> I-4(11/2) and P-2(3/2) -> I-4(9/2), D-4(3/2) -> I-4(13/2) and P-2(3/2) -> I-4(11/2), D-4(3/2) -> I-4(15/2) and P-2(3/2) -> I-4(13/2), respectively.
Resumo:
Transparent and homogeneous aluminophosphate gels and glasses have been widely synthesized through an aqueous sol-gel route, extending significantly the glass-forming range compared to that accessible via the melt-cooling route. Different phosphorus precursors, sodium polyphosphate (NaPO3) and orthophosphate species (NaH2PO4 and/or H3PO4) were compared with regard to the macroscopic properties and the microscopic structure of the resultant gels and glasses as characterized by extensive high-resolution liquid- and solid-state NMR. Sodium polyphosphate solution results in a substantially wider composition range of homogenous gel formation than orthophosphate solutions, and the two routes produce significant structural differences in the sol and xerogel states. Nevertheless, the structures of the glasses obtained upon gel annealing above 400 degrees C are independent of the P-precursors used. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Effect of the substitutions of chloride for fluoride on the chemical and physical properties and the crystallization behavior in heavy metal fluoride glasses has been investigated. The characteristic temperature of the glass does not changed obviously when the fluoride was taken place by chloride. Compared with samples of being free of ErF3, the doping samples are more inclined to be surface crystallization. Optical basicity in the glass system increases with increasing the negative charge provided by the chloride atoms and the absorption peak red shifted is observed in absorption spectra. XRD measurements show that not a single crystalline phase appears in the heated glass samples, which indicate the substitutions of chloride for fluoride with a variety of crystalline precipitation trends. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Broadband neat-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-cermaics is observed. The broad emission is centered at 1290 nm and covers the whole telecommunication wavelength region (1100-1700 nm) with full width at half maximum of about 340 nm. The observed infrared emission could be attributed to the T-3(2)(F) -> (3)A(2)(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 x 10(-24) cm(2)s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.
Resumo:
In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.