979 resultados para SELECTION PRESSURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This exploratory study into director selection involved in-depth interviews with Australian non-executive directors to identify what directors consider as important criteria when selecting new members and the approach taken to identify and select candidates. The findings indicate boards select new members based not only on their ability to contribute complementary skills and experience but also on a perceived compatibility with incumbent board members. While these two selection criteria are considered equal in importance, not all selection approaches are able to adequately assess both criteria. As a result many selections fail to realise their selection criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the proportion of older employees in the workforce is growing, researchers have become increasingly interested in the association between age and occupational well-being. The curvilinear nature of relationships between age and job satisfaction and between age and emotional exhaustion is well-established in the literature, with employees in their late 20s to early 40s generally reporting lower levels of occupational well-being than younger and older employees. However, the mechanisms underlying these curvilinear relationships are so far not well understood due to a lack of studies testing mediation effects. Based on an integration of role theory and research from the adult development and career literatures, this study examined time pressure, work–home conflict, and coworker support as mediators of the relationships between age and job satisfaction and between age and emotional exhaustion. Data came from 771 employees between 17 and 74 years of age in the construction industry. Results showed that employees in their late 20s to early 40s had lower job satisfaction and higher emotional exhaustion than younger and older employees. Time pressure and coworker support fully mediated both the U-shaped relationship between age and job satisfaction and the inversely U-shaped relationship between age and emotional exhaustion. These findings suggest that organizational interventions may help increase the relatively low levels of occupational well-being in certain age groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a sample of companies from the top 500 listed firms in Australia, we investigate whether the presence of a designated nomination committee and female representation on the nomination committee affect board gender diversity. We also examine whether gender diversity on the board affects firm risk and financial performance. We find that board gender diversity is significantly and positively associated with the presence of a designated nomination committee and that female representation on the nomination committee is a significant explanatory factor of increasing board gender diversity following the release of the 2010 Australian Securities Exchange Corporate Governance Council (ASXCGC) recommendations. Further, our results support the business case for board gender diversity as we find greater gender diversity moderates excessive firm risk which in turn improves firms’ financial performance. Our results are robust after correcting for selection bias and controlling for other board, firm and industry characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation and growth of highly crystalline silicon nanoparticles in atmospheric-pressure low-temperature microplasmas at gas temperatures well below the Si crystallization threshold and within a short (100 μs) period of time are demonstrated and explained. The modeling reveals that collision-enhanced ion fluxes can effectively increase the heat flux on the nanoparticle surface and this heating is controlled by the ion density. It is shown that nanoparticles can be heated to temperatures above the crystallization threshold. These combined experimental and theoretical results confirm the effective heating and structure control of Si nanoparticles at atmospheric pressure and low gas temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold atmospheric pressure plasma (APP) is a recent, cutting-edge antimicrobial treatment. It has the potential to be used as an alternative to traditional treatments such as antibiotics and as a promoter of wound healing, making it a promising tool in a range of biomedical applications with particular importance for combating infections. A number of studies show very promising results for APP-mediated killing of bacteria, including removal of biofilms of pathogenic bacteria such as Pseudomonas aeruginosa. However, the mode of action of APP and the resulting bacterial response are not fully understood. Use of a variety of different plasma-generating devices, different types of plasma gases and different treatment modes makes it challenging to show reproducibility and transferability of results. This review considers some important studies in which APP was used as an antibacterial agent, and specifically those that elucidate its mode of action, with the aim of identifying common bacterial responses to APP exposure. The review has a particular emphasis on mechanisms of interactions of bacterial biofilms with APP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite dielectrics hold a promising future for the next generation of insulation materials because of their excellent physical, chemical, and dielectric properties. In the presented study, we investigate the use of plasma processing technology to further enhance the dielectric performance of epoxy resin/SiO2 nanocomposite materials. The SiO2 nanoparticles are treated with atmospheric-pressure non-equilibrium plasma prior to being added into the epoxy resin host. Fourier transform infrared spectroscopy (FTIR) results reveal the effects of the plasma process on the surface functional groups of the treated nanoparticles. Scanning electron microscopy (SEM) results show that the plasma treatment appreciably improves the dispersion uniformity of nanoparticles in the host polymer. With respect to insulation performance, the epoxy/plasma-treated SiO2 specimen shows a 29% longer endurance time than the epoxy/untreated SiO2 nanocomposite under electrical aging. The Weibull plots of the dielectric breakdown field intensity suggest that the breakdown strength of the nanocomposite with the plasma pre-treatment on the nanoparticles is improved by 23.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, atmospheric-pressure plasmas were applied to modify the surface of silane-coated silica nanoparticles. Subsequently nanocomposites were synthesized by incorporating plasma-treated nanoparticles into an epoxy resin matrix. Electrical testing showed that such novel dielectric materials obtained high partial discharge resistance, high dielectric breakdown strength, and enhanced endurance under highly stressed electric field. Through spectroscopic and microscopic analysis, we found surface groups of nanoparticles were activated and radicals were created after the plasma treatment. Moreover, a uniform dispersion of nanoparticles in nanocomposites was observed. It was expected that the improved dielectric performance of the nanocomposites can attribute to stronger chemical bonds formed between surface groups of plasma-treated nanoparticles and molecules in the matrix. This simple yet effective and environmentally friendly approach aims to synthesize the next generation of high-performance nanocomposite dielectric insulation materials for applications in high-voltage power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the application of cold atmospheric-pressure plasmas to modify silica nanoparticles to enhance their compatibility with polymer matrices. Thermally nonequilibrium atmospheric-pressure plasma is generated by a high-voltage radio frequency power source operated in the capacitively coupled mode with helium as the working gas. Compared to the pure polymer and the polymer nanocomposites with untreated SiO2, the plasma-treated SiO2–polymer nanocomposites show higher dielectric breakdown strength and extended endurance under a constant electrical stress. These improvements are attributed to the stronger interactions between the SiO2 nanoparticles and the surrounding polymer matrix after the plasma treatment. Our method is generic and can be used in the production of high-performance organic–inorganic functional nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wind loading on most structural elements is made up of both an external and internal pressure. Internal pressures are also important for the design of naturally ventilated buildings. The internal pressure is the interaction between the external pressure propagating through the building envelope and any internal plant causing building pressurization. Although the external pressure field can be well defined through a series of wind tunnel tests, modeling complexities makes accurate prediction of the internal pressure difficult. For commercial testing for the determination of design cladding pressures, an internal pressure coefficient is generally assumed from wind loading standards. Several theories regarding the propagation of internal pressures through single and multiple dominant openings have been proposed for small and large flexible buildings (Harris (1990), Holmes, (1979), Liu & Saathoff (1981 ), Vickery (1986, 1994), Vickery & Bloxham (1992), Vickery & Georgiou (1991))...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosecond dynamics of two separated discharge cycles in an asymmetric dielectric barrier discharge is studied using time-resolved current and voltage measurements synchronized with high-speed (∼5 ns) optical imaging. Nanosecond dc pulses with tailored raise and fall times are used to generate solitary filamentary structures (SFSs) during the first cycle and a uniform glow during the second. The SFSs feature ∼1.5 mm thickness, ∼1.9 A peak current, and a lifetime of several hundred nanoseconds, at least an order of magnitude larger than in common microdischarges. This can be used in alternating localized and uniform high-current plasma treatments in various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiscale numerical modeling of the species balance and transport in the ionized gas phase and on the nanostructured solid surface complemented by the heat exchange model is used to demonstrate the possibility of minimizing the Gibbs-Thompson effect in low-temperature, low-pressure chemically active plasma-assisted growth of uniform arrays of very thin Si nanowires, impossible otherwise. It is shown that plasma-specific effects drastically shorten and decrease the dispersion of the incubation times for the nucleation of nanowires on non-uniform Au catalyst nanoparticle arrays. The fast nucleation makes it possible to avoid a common problem of small catalyst nanoparticle burying by amorphous silicon. These results explain a multitude of experimental observations on chemically active plasma-assisted Si nanowire growth and can be used for the synthesis of a range of inorganic nanowires for environmental, biomedical, energy conversion, and optoelectronic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various reactor configurations for generating atmospheric-pressure discharges were tested, and several types of nanostructures, including Mo nanoflakes, were successfully synthesized. Here, we present photographs of the discharges, as well as SEM images of representative nanostructures.