947 resultados para SAMPLING
Resumo:
Passive samplers have been predominantly used to monitor environmental conditions in single volumes. However, measurements using a calibrated passive sampler- Solid Phase Microextraction (SPME) fibre, in three houses with cold pitched roof, successfully demonstrated the potential of the SPME fibre as a device for monitoring air movement in two volumes. The roofs monitored were pitched at 15° - 30° with insulation thickness varying between 200-300 mm on the ceiling. For effective analysis, two constant sources of volatile organic compounds were diffused steadily in the house. Emission rates and air movement from the house to the roof was predicted using developed algorithms. The airflow rates which were calibrated against conventional tracer gas techniques were introduced into a HAM software package to predict the effects of air movement on other varying parameters. On average it was shown from the in situ measurements that about 20-30% of air entering the three houses left through gaps and cracks in the ceiling into the roof. Although these field measurements focus on the airflows, it is associated with energy benefits such that; if these flows are reduced then significantly energy losses would also be reduced (as modelled) consequently improving the energy efficiency of the house. Other results illustrated that condensation formation risks were dependent on the airtightness of the building envelopes including configurations of their roof constructions.
Resumo:
The decline of bees has raised concerns regarding their conservation and the maintenance of ecosystem services they provide to bee-pollinated wild flowers and crops. Although the Mediterranean region is a hotspot for bee species richness, their status remains poorly studied. There is an urgent need for cost-effective, reliable, and unbiased sampling methods that give good bee species richness estimates. This study aims: (a) to assess bee species richness in two common Mediterranean habitat types: semi-natural scrub (phrygana) and managed olive groves; (b) to compare species richness in those systems to that of other biogeographic regions, and (c) to assess whether six different sampling methods (pan traps, variable and standardized transect walks, observation plots and trap nests), previously tested in other European biogeographic regions, are suitable in Mediterranean communities. Eight study sites, four per habitat type, were selected on the island of Lesvos, Greece. The species richness observed was high compared to other habitat types worldwide for which comparable data exist. Pan traps collected the highest proportion of the total bee species richness across all methods at the scale of a study site. Variable and standardized transect walks detected the highest total richness over all eight study sites. Trap nests and observation plots detected only a limited fraction of the bee species richness. To assess the total bee species richness in bee diversity hotspots, such as the studied habitats, we suggest a combination of transect walks conducted by trained bee collectors and pan trap sampling
Resumo:
We reconsider the theory of the linear response of non-equilibrium steady states to perturbations. We �rst show that by using a general functional decomposition for space-time dependent forcings, we can de�ne elementary susceptibilities that allow to construct the response of the system to general perturbations. Starting from the de�nition of SRB measure, we then study the consequence of taking di�erent sampling schemes for analysing the response of the system. We show that only a speci�c choice of the time horizon for evaluating the response of the system to a general time-dependent perturbation allows to obtain the formula �rst presented by Ruelle. We also discuss the special case of periodic perturbations, showing that when they are taken into consideration the sampling can be �ne-tuned to make the de�nition of the correct time horizon immaterial. Finally, we discuss the implications of our results in terms of strategies for analyzing the outputs of numerical experiments by providing a critical review of a formula proposed by Reick.
Resumo:
Consideration is given to a standard CDMA system and determination of the density function of the interference with and without Gaussian noise using sampling theory concepts. The formula derived provides fast and accurate results and is a simple, useful alternative to other methods
Resumo:
The goal of this paper is to study and further develop the orthogonality sampling or stationary waves algorithm for the detection of the location and shape of objects from the far field pattern of scattered waves in electromagnetics or acoustics. Orthogonality sampling can be seen as a special beam forming algorithm with some links to the point source method and to the linear sampling method. The basic idea of orthogonality sampling is to sample the space under consideration by calculating scalar products of the measured far field pattern , with a test function for all y in a subset Q of the space , m = 2, 3. The way in which this is carried out is important to extract the information which the scattered fields contain. The theoretical foundation of orthogonality sampling is only partly resolved, and the goal of this work is to initiate further research by numerical demonstration of the high potential of the approach. We implement the method for a two-dimensional setting for the Helmholtz equation, which represents electromagnetic scattering when the setup is independent of the third coordinate. We show reconstructions of the location and shape of objects from measurements of the scattered field for one or several directions of incidence and one or many frequencies or wave numbers, respectively. In particular, we visualize the indicator function both with the Dirichlet and Neumann boundary condition and for complicated inhomogeneous media.
Resumo:
Serial sampling and stable isotope analysis performed along the growth axis of vertebrate tooth enamel records differences attributed to seasonal variation in diet, climate or animal movement. Because several months are required to obtain mature enamel in large mammals, modifications in the isotopic composition of environmental parameters are not instantaneously recorded, and stable isotope analysis of tooth enamel returns a time-averaged signal attenuated in its amplitude relative to the input signal. For convenience, stable isotope profiles are usually determined on the side of the tooth where enamel is thickest. Here we investigate the possibility of improving the time resolution by targeting the side of the tooth where enamel is thinnest. Observation of developing third molars (M3) in sheep shows that the tooth growth rate is not constant but decreases exponentially, while the angle between the first layer of enamel deposited and the enamel–dentine junction increases as a tooth approaches its maximal length. We also noted differences in thickness and geometry of enamel growth between the mesial side (i.e., the side facing the M2) and the buccal side (i.e., the side facing the cheek) of the M3. Carbon and oxygen isotope variations were measured along the M3 teeth from eight sheep raised under controlled conditions. Intra-tooth variability was systematically larger along the mesial side and the difference in amplitude between the two sides was proportional to the time of exposure to the input signal. Although attenuated, the mesial side records variations in the environmental signal more faithfully than the buccal side. This approach can be adapted to other mammals whose teeth show lateral variation in enamel thickness and could potentially be used as an internal check for diagenesis.
Resumo:
This contribution proposes a novel probability density function (PDF) estimation based over-sampling (PDFOS) approach for two-class imbalanced classification problems. The classical Parzen-window kernel function is adopted to estimate the PDF of the positive class. Then according to the estimated PDF, synthetic instances are generated as the additional training data. The essential concept is to re-balance the class distribution of the original imbalanced data set under the principle that synthetic data sample follows the same statistical properties. Based on the over-sampled training data, the radial basis function (RBF) classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier’s structure and the parameters of RBF kernels are determined using a particle swarm optimisation algorithm based on the criterion of minimising the leave-one-out misclassification rate. The effectiveness of the proposed PDFOS approach is demonstrated by the empirical study on several imbalanced data sets.
Resumo:
Monthly zonal mean climatologies of atmospheric measurements from satellite instruments can have biases due to the nonuniform sampling of the atmosphere by the instruments. We characterize potential sampling biases in stratospheric trace gas climatologies of the Stratospheric Processes and Their Role in Climate (SPARC) Data Initiative using chemical fields from a chemistry climate model simulation and sampling patterns from 16 satellite-borne instruments. The exercise is performed for the long-lived stratospheric trace gases O3 and H2O. Monthly sampling biases for O3 exceed 10% for many instruments in the high-latitude stratosphere and in the upper troposphere/lower stratosphere, while annual mean sampling biases reach values of up to 20% in the same regions for some instruments. Sampling biases for H2O are generally smaller than for O3, although still notable in the upper troposphere/lower stratosphere and Southern Hemisphere high latitudes. The most important mechanism leading to monthly sampling bias is nonuniform temporal sampling, i.e., the fact that for many instruments, monthly means are produced from measurements which span less than the full month in question. Similarly, annual mean sampling biases are well explained by nonuniformity in the month-to-month sampling by different instruments. Nonuniform sampling in latitude and longitude are shown to also lead to nonnegligible sampling biases, which are most relevant for climatologies which are otherwise free of biases due to nonuniform temporal sampling.
Resumo:
The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.
Resumo:
The EU Water Framework Directive (WFD) requires that the ecological and chemical status of water bodies in Europe should be assessed, and action taken where possible to ensure that at least "good" quality is attained in each case by 2015. This paper is concerned with the accuracy and precision with which chemical status in rivers can be measured given certain sampling strategies, and how this can be improved. High-frequency (hourly) chemical data from four rivers in southern England were subsampled to simulate different sampling strategies for four parameters used for WFD classification: dissolved phosphorus, dissolved oxygen, pH and water temperature. These data sub-sets were then used to calculate the WFD classification for each site. Monthly sampling was less precise than weekly sampling, but the effect on WFD classification depended on the closeness of the range of concentrations to the class boundaries. In some cases, monthly sampling for a year could result in the same water body being assigned to three or four of the WFD classes with 95% confidence, due to random sampling effects, whereas with weekly sampling this was one or two classes for the same cases. In the most extreme case, the same water body could have been assigned to any of the five WFD quality classes. Weekly sampling considerably reduces the uncertainties compared to monthly sampling. The width of the weekly sampled confidence intervals was about 33% that of the monthly for P species and pH, about 50% for dissolved oxygen, and about 67% for water temperature. For water temperature, which is assessed as the 98th percentile in the UK, monthly sampling biases the mean downwards by about 1 °C compared to the true value, due to problems of assessing high percentiles with limited data. Low-frequency measurements will generally be unsuitable for assessing standards expressed as high percentiles. Confining sampling to the working week compared to all 7 days made little difference, but a modest improvement in precision could be obtained by sampling at the same time of day within a 3 h time window, and this is recommended. For parameters with a strong diel variation, such as dissolved oxygen, the value obtained, and thus possibly the WFD classification, can depend markedly on when in the cycle the sample was taken. Specifying this in the sampling regime would be a straightforward way to improve precision, but there needs to be agreement about how best to characterise risk in different types of river. These results suggest that in some cases it will be difficult to assign accurate WFD chemical classes or to detect likely trends using current sampling regimes, even for these largely groundwater-fed rivers. A more critical approach to sampling is needed to ensure that management actions are appropriate and supported by data.
Resumo:
Weeds tend to aggregate in patches within fields and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at different scales, the strength of the relationships between soil properties and weed density would also be expected to be scale-dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We have developed a general method that uses novel within-field nested sampling and residual maximum likelihood (REML) estimation to explore scale-dependent relationships between weeds and soil properties. We have validated the method using a case study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance and covariance into scale-specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales we optimized the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.