957 resultados para Runge Lenz Three Body Hydrogen Molecular Ion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fungi isolated from marine organisms have been shown to produce several interesting secondary metabolites with important biological activities. Such chemical diversity may be associated to environmental stress conditions and may represent an important source of NCE for bioprospection. Quinolactins belong to a rare fungi-alkaloid class with a unique N-methyl-quinolone moiety fused to a lactam ring and present several bioactivities1. Fungi strain Dm1 was isolated from red alga Dichotomaria marginata, collected from Brazil SE coast, and was grown in sterile rice solid media at 26oC 2, which was then extracted with MeOH. The MeCN fr. from the MeOH extract was chromatographed over Sephadex LH-20 and fr. 4 afforded quinolactin (QL) alkaloids B1, B2 and A, whereas fr. 5 afforded quinolactin D1 after purification by HPLC-DAD. Structural determination of pure compounds was based on HRMS, UV, and NMR spectral analyses, in addition to comparison with literature data and Antimarin® databank. UV data indicated the presence of similar chromophores with λmax at ca. 247 and 320nm. HRMS and tandem MS analyses using both negative and positive ion modes for the isolated compounds indicated their molecular formula and structural features, as for QL B1: C15H16O2N2 [M+H 257], which showed one fragment at m/z 214 [-CHNO]; QL B2: C15H16O3N2 [M+H 273], with product ions at m/z 230 [-CHNO.] and m/z 186 [-C4H9NO.]; for QL A: C16H18N2O2 [M+H 271], which presented one ion at m/z 214, due to loss of fragment (-C4H9) from the molecular ion; and for QL D1: C16H18N2O3 [M+H 287], with product ions at m/z 186 [-CHNO] and m/z 230 [-C4H9]. Such data suggested fragmentation proposals, e.g. for Quinolactin B1 (Fig. 1), which confirmed the structures of the isolated quinolactins, and may represent an important contribution for the sustainable exploration of marine biodiversity.
Resumo:
Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1: 5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180 degrees with 5 degrees increments totalling nearly 6 x 10(5) numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10 degrees,110 degrees]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60 degrees,130 degrees]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Many social wasps are known to use thermogenesis to warm up their flight muscles and are therefore able to forage under a broad range of ambient temperatures. However it is uncertain whether there exists a possible relation between ambient temperature and thermogenic capacity for tropical species, as we lack studies focusing on these species. Therefore, we examined the use of this mechanism in the neotropical Epiponini wasp Polybia ignobilis. More specifically, we used a thermographic camera to obtain data of the surface temperatures of three body regions (head, thorax and abdomen) of wasps during foraging activities (pre-flight, flight and post-flight) in cold [initial pe- riod of foraging activity: TAM : 15 − 20◦C] and warm [final period of foraging activity: TPM : 30 − 35◦C] conditions. Thorax temperature (Tth) was always higher than head (Th) and abdomen temperature (Tabd). In general, the lowest body temperatures were observed during the pre-flight period, while the highest values occurred upon the return of the wasps from the foraging flight. Except for the pre-flight period, Tth was always higher than Tabd, indicating that heat generated at the thorax was preferentially directed to the cephalic region. Therefore we confirmed the use of thermogenesis by a neotropical social wasp, although its magnitude was found modest compared to temperate species, which suggests a link between thermal environment and thermogenic capacity. We also showed that P. ignobilis modulates heat production as a function of ambient temperature (TA), maintaining a greater temperature difference (Tbody − TA) at cooler temperatures. Finally, we identified the cephalic region of wasps as an important route for the dissipation of the heat generated during flight