992 resultados para Rotational Panoramic Radiography
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Panoramic Sea Happening (After Kantor) is a 7 minute durational film that reimagines part of Tadeusz Kantor's original sea happenings from 1967 in a landscape in which the sea has retreated. The conductor of Kantor’s original performance is replaced with a sound object cast adrift on a beach in Dungeness (UK). The object plays back the sound of the sea into the landscape, which was performed live and then filmed from three distinct angles. The first angle mimics the position of the conductor in Kantor’s original happening, facing outwards into the horizon of the beach and recalls the image in Kantor’s work of a human figure undertaking the absurd task of orchestrating the sound of a gigantic expanse of water. The second angle exposes the machine itself and the large cone that amplifies the sound, reinforcing the isolation of the object. The third angle reveals a decommissioned nuclear power station and sound objects used as a warning system for the power plant. Dungeness is a location where the sea has been retreating from the land, leaving traces of human activity through the disused boat winches, abandoned cabins and the decommissioned nuclear buildings. It is a place in which the footprint of the anthropocene is keenly felt. The sound object is intended to act as an anthropomorphic figure, ghosting the original conductor and offering the sound of the sea back into the landscape through a wide mouthpiece, echoing Kantor’s own load hailer in the original sequence of sea happenings. It speculates on Kantor's theory of the bio-object, which proposed a symbiotic relationship between the human and the nonhuman object in performance, as a possible instrument to access a form of geologic imagination. In this configuration, the human itself is absent, but is evoked through the objects left behind. The sound object, helpless in a red dingy, might be thought of as a co-conspirator with the viewer, enabling a looking back to the past in a landscape of an inevitable future. The work was originally commissioned by the University of Kent in collaboration with the Polish Cultural Institute for the Symposium Kantorbury Kantorbury in Canterbury (UK) to mark the 100 years since Tadeusz Kantor’s birth (15 - 19 September 2015). It should be projected and requires stereo speakers.
Resumo:
2016 is the outbreak year of the virtual reality industry. In the field of virtual reality, 3D surveying plays an important role. Nowadays, 3D surveying technology has received increasing attention. This project aims to establish and optimize a WebGL three-dimensional broadcast platform combined with streaming media technology. It takes streaming media server and panoramic video broadcast in browser as the application background. Simultaneously, it discusses about the architecture from streaming media server to panoramic media player and analyzing relevant theory problem. This paper focuses on the debugging of streaming media platform, the structure of WebGL player environment, different types of ball model analysis, and the 3D mapping technology. The main work contains the following points: Initially, relay on Easy Darwin open source streaming media server, built a streaming service platform. It can realize the transmission from RTSP stream to streaming media server, and forwards HLS slice video to clients; Then, wrote a WebGL panoramic video player based on Three.js lib with JQuery browser playback controls. Set up a HTML5 panoramic video player; Next, analyzed the latitude and longitude sphere model which from Three.js library according to WebGL rendering method. Pointed out the drawbacks of this model and the breakthrough point of improvement; After that, on the basis of Schneider transform principle, established the Schneider sphere projection model, and converted the output OBJ file to JS file for media player reading. Finally implemented real time panoramic video high precision playing without plugin; At last, I summarized the whole project. Put forward the direction of future optimization and extensible market.
Resumo:
Optical mapping of voltage signals has revolutionised the field and study of cardiac electrophysiology by providing the means to visualise changes in electrical activity at a high temporal and spatial resolution from the cellular to the whole heart level under both normal and disease conditions. The aim of this thesis was to develop a novel method of panoramic optical mapping using a single camera and to study myocardial electrophysiology in isolated Langendorff-perfused rabbit hearts. First, proper procedures for selection, filtering and analysis of the optical data recorded from the panoramic optical mapping system were established. This work was followed by extensive characterisation of the electrical activity across the epicardial surface of the preparation investigating time and heart dependent effects. In an initial study, features of epicardial electrophysiology were examined as the temperature of the heart was reduced below physiological values. This manoeuvre was chosen to mimic the temperatures experienced during various levels of hypothermia in vivo, a condition known to promote arrhythmias. The facility for panoramic optical mapping allowed the extent of changes in conduction timing and pattern of ventricular activation and repolarisation to be assessed. In the main experimental section, changes in epicardial electrical activity were assessed under various pacing conditions in both normal hearts and in a rabbit model of chronic MI. In these experiments, there was significant changes in the pattern of electrical activation corresponding with the changes in pacing regime. These experiments demonstrated a negative correlation between activation time and APD, which was not maintained during ventricular pacing. This suggests that activation pattern is not the sole determinant of action potential duration in intact hearts. Lastly, a realistic 3D computational model of the rabbit left ventricle was developed to simulate the passive and active mechanical properties of the heart. The aim of this model was to infer further information from the experimental optical mapping studies. In future, it would be feasible to gain insight into the electrical and mechanical performance of the heart by simulating experimental pacing conditions in the model.
Resumo:
In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem.
Resumo:
The structure of an animal’s eye is determined by the tasks it must perform. While vertebrates rely on their two eyes for all visual functions, insects have evolved a wide range of specialized visual organs to support behaviors such as prey capture, predator evasion, mate pursuit, flight stabilization, and navigation. Compound eyes and ocelli constitute the vision forming and sensing mechanisms of some flying insects. They provide signals useful for flight stabilization and navigation. In contrast to the well-studied compound eye, the ocelli, seen as the second visual system, sense fast luminance changes and allows for fast visual processing. Using a luminance-based sensor that mimics the insect ocelli and a camera-based motion detection system, a frequency-domain characterization of an ocellar sensor and optic flow (due to rotational motion) are analyzed. Inspired by the insect neurons that make use of signals from both vision sensing mechanisms, advantages, disadvantages and complementary properties of ocellar and optic flow estimates are discussed.
Resumo:
This thesis details the design and applications of a terahertz (THz) frequency comb spectrometer. The spectrometer employs two offset locked Ti:Sapphire femtosecond oscillators with repetition rates of approximately 80 MHz, offset locked at 100 Hz to continuously sample a time delay of 12.5 ns at a maximum time delay resolution of 15.6 fs. These oscillators emit continuous pulse trains, allowing the generation of a THz pulse train by the master, or pump, oscillator and the sampling of this THz pulse train by the slave, or probe, oscillator via the electro-optic effect. Collecting a train of 16 consecutive THz pulses and taking the Fourier transform of this pulse train produces a decade-spanning frequency comb, from 0.25 to 2.5 THz, with a comb tooth width of 5 MHz and a comb tooth spacing of ~80 MHz. This frequency comb is suitable for Doppler-limited rotational spectroscopy of small molecules. Here, the data from 68 individual scans at slightly different pump oscillator repetition rates were combined, producing an interleaved THz frequency comb spectrum, with a maximum interval between comb teeth of 1.4 MHz, enabling THz frequency comb spectroscopy.
The accuracy of the THz frequency comb spectrometer was tested, achieving a root mean square error of 92 kHz measuring selected absorption center frequencies of water vapor at 10 mTorr, and a root mean square error of 150 kHz in measurements of a K-stack of acetonitrile. This accuracy is sufficient for fitting of measured transitions to a model Hamiltonian to generate a predicted spectrum for molecules of interest in the fields of astronomy and physical chemistry. As such, the rotational spectra of methanol and methanol-OD were acquired by the spectrometer. Absorptions from 1.3 THz to 2.0 THz were compared to JPL catalog data for methanol and the spectrometer achieved an RMS error of 402 kHz, improving to 303 kHz when excluding low signal-to-noise absorptions. This level of accuracy compares favorably with the ~100 kHz accuracy achieved by JPL frequency multiplier submillimeter spectrometers. Additionally, the relative intensity performance of the THz frequency comb spectrometer is linear across the entire decade-spanning bandwidth, making it the preferred instrument for recovering lineshapes and taking absolute intensity measurements in the THz region. The data acquired by the Terahertz Frequency Comb Spectrometer for methanol-OD is of comparable accuracy to the methanol data and may be used to refine the fit parameters for the predicted spectrum of methanol-OD.
Resumo:
This thesis presents the study of small nitrogen-bearing molecules, from diatomic radicals to complex organic molecules, by means of rotational and ro-vibrational spectroscopy. Besides their theoretical relevance, which spans from anharmonic force field analyses to energetic and structural properties, I have chosen this family of species because of their astrochemical importance. After some basic knowledge of molecular spectroscopy and astrochemistry is introduced, the instrumentation used during the course of my PhD school is described. Then, the most relevant studies I conducted during the last three years are presented. Generally speaking, a number of molecules of astrophysical relevance have been characterized by means of rotational and ro-vibrational spectroscopy. The sample of studied species is constituted by small radicals (imidogen, amidogen, and titanium nitride), cyanopolyynes (cyanoacetylene) and pre-biotic molecules (aminoacetonitrile): these studies are presented in great detail. Among the results, the first astronomical detection of two deuterated radicals (NHD and ND2) is presented in this thesis.Thanks to our studies, it was possible to clearly identify molecular absorptions of these species towards the pre-stellar core IRAS16293-2422, as recorded by the Herschel Space Observatory mission. These observations confirm the strong deuterium enhancement generally observed in this cloud but they reveal that models underestimate the abundances of NHD and ND2. I also report the detection of vibrationally excited aminoacetonitrile (NH2CH2CN) in Sagittarius B2, as observed in the ReMoCa survey. This is the second detection of aminoacetonitrile in the interstellar medium and the first astronomical observation of its vibrationally hot lines. This represents a small step toward the comprehension on how complex organic molecules are formed and which processes can lead to the formation of glycine. Finally, few general remarks are discussed and the importance of future laboratory studies is pointed out, along with possible perspectives.
Resumo:
The rotational and ro-vibrational spectroscopy analysis of selected molecules of astrophysical importance, namely formaldehyde, mono-deuterated hydrogen sulfide, cyanoacetylene, deuterated cyanoacetylene, aminoacetonitrile, allylimine, and 2-aza-1,3-butadiene, has been presented in this thesis. For formaldehyde and mono-deuterated hydrogen sulfide, which are well-known interstellar molecules, a detailed Measured Active Rotational–Vibrational Energy Levels (MARVEL) analysis has been performed. For both of them, the MARVEL approach has been used to accurately derive the rotational and ro-vibrational energy levels from the experimental data available in the literature combined with new millimeter-wave measurements. Overall, the MARVEL analysis span a huge frequency range, from millimeter-wave to infrared (IR). For allylimine and 2-aza-1,3-butadiene, the pure rotational spectrum has been extended to the millimeter-wave region. The outcome of these two studies is the derivation of very accurate spectroscopic parameters that allow the accurate prediction of their rotational transitions over a large frequency range. For allylimine, this line catalog allowed the tentative detection of two isomers of allylimine (Ta and Ts) towards the G+0.693 molecular cloud. In addition to rotational spectroscopy, high-resolution IR spectra of interstellar molecules play also of pivotal role for the exploration of astromomical objects. For these reasons, high-resolution IR spectra of cyanoacetylene, deuterated cyanoacetylene, and aminoacetonitrile have been investigated. The precise spectroscopic constants of several vibrational excited states of these three molecules have been derived from the assignment of newly recorded IR spectra. Given the fact that all these three molecules are potentially present in Titan’s atmosphere, their ro-vibrational transitions can be considered unvaluable tools for their search, which might also be extended to other planetary atmospheres.
Resumo:
Our solar system contains an impressive amount of celestial bodies. For example Saturn posses a huge variety of natural satellites, the diversity in size and physical proprieties of which might amaze imagination. The observational data gathered in 30 years range of deep space missions revealed, that some of these bodies can hide subsurface oceans under their crust. The water, as we know, serves as a fundamental base for a possible appearance of life. This statement is quite exited for the scientific society and serves as a reason for studying so called ”ocean worlds”. In order to detect the celestial bodies with the hidden subsurface ocean, one of the key aspects is the study of their rotational state, which is strongly coupled with the body internal structure. It can be done through the various techniques mentioned in Chapter 1. The main goal of the thesis is the study of rotational state of Titan, whose interior structure expectedly contains liquid ocean layer under its icy crust. Titan is the largest moon of Saturn and it is the second largest moon in the solar system in general. This natural satellite is of particular scientific interest, because it is one of a kind which has substantial atmosphere. The present work was done using radio tracking data of the Dragonfly mission which is one of the next NASA’s missions destined for Titan selected as a part of the New Frontiers Program in 2019. The detailed characteristic of the Dragonfly regarding the landing site and mission lifetime was reported in Chapter 2. The radio-tracking communication link from Titan side was performed using Dragonfly X band transponder according to the schedule tracking opportunity. From Earth side according to the mission, Deep Space Station 25 which is a part of NASA’s Deep Space Network was considered. Only Doppler data was used for studying Titan rotational state, even though there are other reliable techniques described in Chapter 3, that in general could be implemented.
Resumo:
In the last decades the evolution of radio science has made it possible to infer the atmosphere composition, the surface and the internal structure of the planets. Since the arrival of the first landers on Mars it was possible to make accurate measurements of the dynamics of this planet; in this thesis we will focus on InSight, considering the data disclosed by the JPL relative to the period from November 26th, 2018 to August 15th, 2021. In particular, the Doppler and Range measurements conducted by the RISE (Rotation and Interior Structure Experiment) will be analyzed. Since the accuracy of these measurements was improved significantly the effects due to the atmosphere of Mars might be measured so it should thus be possible to obtain a better estimate of the parameters characterizing the rotational dynamic of Mars. A large part of this study will therefore be dedicated to the study, modeling, implementation and analysis of the atmosphere of Mars, in both its components: troposphere and ionosphere. Once the complete model of Mars had been built, i.e. including the atmosphere, it was then possible to analyze the residuals, obtained between the data of the measurements carried out and the values predicted by the developed model, in order to obtain an estimate of the rotational dynamic of Mars.
Resumo:
The Subaxial Injury Classification (SLIC) system and severity score has been developed to help surgeons in the decision-making process of treatment of subaxial cervical spine injuries. A detailed description of all potential scored injures of the SLIC is lacking. We performed a systematic review in the PubMed database from 2007 to 2014 to describe the relationship between the scored injuries in the SLIC and their eventual treatment according to the system score. Patients with an SLIC of 1-3 points (conservative treatment) are neurologically intact with the spinous process, laminar or small facet fractures. Patients with compression and burst fractures who are neurologically intact are also treated nonsurgically. Patients with an SLIC of 4 points may have an incomplete spinal cord injury such as a central cord syndrome, compression injuries with incomplete neurologic deficits and burst fractures with complete neurologic deficits. SLIC of 5-10 points includes distraction and rotational injuries, traumatic disc herniation in the setting of a neurological deficit and burst fractures with an incomplete neurologic deficit. The SLIC injury severity score can help surgeons guide fracture treatment. Knowledge of the potential scored injures and their relationships with the SLIC are of paramount importance for spine surgeons who treated subaxial cervical spine injuries.