611 resultados para Rotary Sorter
Resumo:
The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Materials and Methods: Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Dentsply-Maillefer). Afterwards, the teeth were sectioned transversely and submitted to histotechnical processing to obtain histological sections for microscopic evaluation. The images were analyzed by the Corel Photo-Paint X5 program (Corel Corporation) using an integration grid superimposed on the image. Results: Statistical analysis (U-Mann-Whitney - P < 0.05) demonstrated that G1 presented higher cleaning capacity when compared to G2. Conclusions: The rotary technique presented better cleaning results in the apical third of the root canal system when compared to the manual technique.
Resumo:
The aims of this study were to evaluate the effect of root canal filling techniques on root fracture resistance and to analyze, by finite element analysis (FEA), the expansion of the endodontic sealer in two different root canal techniques. Thirty single-rooted human teeth were instrumented with rotary files to a standardized working length of 14 mm. The specimens were embedded in acrylic resin using plastic cylinders as molds, and allocated into 3 groups (n=10): G(lateral) - lateral condensation; G(single-cone) - single cone; G(tagger) - Tagger's hybrid technique. The root canals were prepared to a length of 11 mm with the #3 preparation bur of a tapered glass fiber-reinforced composite post system. All roots received glass fiber posts, which were adhesively cemented and a composite resin core was built. All groups were subjected to a fracture strength test (1 mm/min, 45°). Data were analyzed statistically by one-way ANOVA with a significance level of 5%. FEA was performed using two models: one simulated lateral condensation and Tagger's hybrid technique, and the other one simulated the single-cone technique. The second model was designed with an amount of gutta-percha two times smaller and a sealer layer two times thicker than the first model. The results were analyzed using von Mises stress criteria. One-way ANOVA indicated that the root canal filling technique affected the fracture strength (p=0.004). The G(lateral) and G(tagger) produced similar fracture strength values, while G(single-cone) showed the lowest values. The FEA showed that the single-cone model generated higher stress in the root canal walls. Sealer thickness seems to influence the fracture strength of restored endodontically treated teeth.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper refers to the design of an expert system that captures a waveform through the use of an accelerometer, processes the signal and converts it to the frequency domain using a Fast Fourier Transformer to then, using artificial intelligence techniques, specifically Fuzzy Reasoning, it determines if there is any failure present in the underlying mode of the equipment, such as imbalance, misalignment or bearing defects.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)
Resumo:
With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)
Resumo:
With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)
Resumo:
The Bernoulli's model for vibration of beams is often used to make predictions of bending modulus of elasticity when using dynamic tests. However this model ignores the rotary inertia and shear. Such effects can be added to the solution of Bernoulli's equation by means of the correction proposed by Goens (1931) or by Timoshenko (1953). But to apply these corrections it is necessary to know the E/G ratio of the material. The objective of this paper is the determination of the E/G ratio of wood logs by adjusting the analytical solution of the Timoshenko beam model to the dynamic testing data of 20 Eucalyptus citriodora logs. The dynamic testing was performed with the logs in free-free suspension. To find the stiffness properties of the logs, the residue minimization was carried out using the Genetic Algorithm (GA). From the result analysis one can reasonably assume E/G = 20 for wood logs.
Resumo:
The diverse Holocene morphological features along the south coast of the state of Santa Catarina include lagoons and residual lakes, a barrier, a delta (constructed by the Tubarao River), and pre-existing incised valleys that have flooded and filled. This scenario contains the sedimentary record of the transition from a bay to a lagoon system, which occurred during the rise and subsequent semi-stabilisation of the relative sea-level during the Holocene. The geomorphological evolution of this area was investigated using a combination of morphology, stratigraphic analysis of rotary push cores, vibracores and trenches with radiocarbon dating, taxonomic determination and taphonomic characterisation of Holocene fossil molluscs. Palaeogeographic maps were constructed to illustrate how the bay evolved over the last 8000 years. The relative sea-level rise and local sedimentary processes were the prime forcing factors determining the depositional history and palaeogeographic changes. The Holocene sedimentary succession began between 8000 and 5700 cal BP with the deposits of transgressive sandsheets. These deposits correspond to the initial marine flooding surface that was formed while the relative sea-level rose at a higher rate than the input of sediments, prior to the formation of the coastal barrier. The change from a bay to a lagoon system occurred around 5700 and 2500 cal BP during the mid-Holocene highstand with the formation of the barrier and with the achievement of a balance between sea-level rise and sedimentary supply. Until 2500 cal BP, the presence of this barrier, the following gentle decline in sea level and the initial emergence of back-barrier features restricted the hydro-dynamic circulation inside the bay and favoured an increase in the Tubarao River delta progradation rate. The final stage, during the last 2500 years, was marked by the increasing back-barrier width, with the establishment of salt marshes, the arrival of the delta in the back-barrier, and the advance of aeolian dunes along the outer lagoon margins. This study shed light on the mechanisms of coastal bay evolution in a setting existed prior to the beginning of barrier lagoon sedimentation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Many extractors are used to quantify available P in soils, but few studies have assessed the availability of P in soils of the wet tropics amended with high rates of biosolids. In this study, ion exchange resin, Mehlich-1 solution, and Fe-impregnated strips were used to quantify available P in samples from an Oxisol amended with surface-applied biosolids in a long-term field experiment. The soil's maximum capacity for P adsorption was also estimated. Experimental design consisted of randomized blocks, with four treatments and three replicates. Samples of biosolids were collected every year during the experiment, from 1999 to 2002. In 1999, two applications were made before growing maize (Zea mays L.) in austral summer and winter. Treatments were: Control (no biosolids added); B (biosolids added at rates based on their total N content); B2 (biosolids added at twice the rate of B), and B4 (biosolids added at four times the rate of B). Soil samples were collected at 0- to 0.1-, 0.1- to 0.2-, and 0.2- to 0.4-m depths. Biosolids were broadcast applied and incorporated into the soil to a depth of 0.2 m using a rotary hoe. The Oxisol had a high P-adsorption capacity (around 2450 mg kg(-1)) because of its high contents of clay and Fe and Al oxides. All the extractors were effective at assessing P availability and were positively correlated among themselves. Available P soil contents correlated positively with P content in maize leaves and grains, and the resin method yielded the highest correlation with P contents in leaves and grains.