996 resultados para Rocks, metamorphic
Resumo:
Expression profile of a Laccase2 encoding gene during the metamorphic molt in Apis mellifera (Hymenoptera, Apidae). Metamorphosis in holometabolous insects occurs through two subsequent molting cycles: pupation (metamorphic molt) and adult differentiation (imaginal molt). The imaginal molt in Apis mellifera L. was recently investigated in both histological and physiological-molecular approaches. Although the metamorphic molt in this model bee is extremely important to development, it is not well-known yet. In the current study we used this stage as an ontogenetic scenario to investigate the transcriptional profile of the gene Amlac2, which encodes a laccase with an essential role in cuticle differentiation. Amlac2 expression in epidermis was contrasted with the hemolymph titer of ecdysteroid hormones and with the most evident morphological events occurring during cuticle renewal. RT-PCR semiquantitative analyses using integument samples revealed increased levels of Amlac2 transcripts right after apolysis and during the subsequent pharate period, and declining levels near pupal ecdysis. Compared with the expression of a cuticle protein gene, AmelCPR14, these results highlighted the importance of the ecdysteroid-induced apolysis as an ontogenetic marker of gene reactivation in epidermis for cuticle renewal. The obtained results strengthen the comprehension of metamorphosis in Apis mellifera. In addition, we reviewed the literature about the development of A. mellifera, and emphasize the importance of revising the terminology used to describe honey bee molting cycles.
Resumo:
The Guilleries are a small and mountainous area located in the north-westem part of the Catalonian Coastal Ranges where metamorphic and igneous Paleozoic rocks are exposed. After the main hercynian folding this area was affected by a brittle deformation that is mainly manifested by the intrusion of a very large number of dykes of granodiorite and the development of a complex joint system. Trends of dykes indicate that their intrusion was related to a SE-NW extension, whose estimated value is 40% on an average. This extension seems to stand, although without any associated igneous event, with the development of NE-SW directed joints which make the main set. Five families more were developed later, onegently-dipping and fou upright; the latter trending roughly SE-NW, ENE-WSW, ESE-WNW and N-S. AU the joint sets appear in the metasedimentary Paleozoic rocks and in the hercynian intrusive bodies. Concerning the ages, joints that belong to the NE-SW and SE-NW directed sets and also those slightly dipping have been attributed to the late-hercynian times and all the other are considered to be later
Resumo:
This paper makes a contribution to the knowledge of the coastal fringe morphology of the ‘Macizo de Begur’. A lithological study, macro and microscopic, has been carried out of a variety of a series of metamorphic, plutonic, phyllonianic and effusive rocks
Resumo:
The Gets nappe, a decollement cover nappe located at the top of the Prealps, is characterized by the occurrence of ophiolitic rocks. The metamorphic grade in the Gets nappe was determined using illite crystallinity and clay mineral assemblages. Samples from the same locality were analyzed to estimate variations in illite crystallinity values and in the parageneses of clay minerals, both in sedimentary elements of a breccia and in the embedding shaly flysch. For samples from one and the same locality, the range in illite crystallinity data between breccia elements and the shaly flysch is comparable to the variation between different shaly beds. Two S-N transects along the Gets nappe reveal the same metamorphic gradient, with the internal parts of the nappe being characterized by middle anchizonal metamorphism and the external parts showing diagenetic conditions. The metamorphic grade is higher within the Gets nappe than in its hangingwall (i.e. the Breche and Simme nappes), suggesting that the metamorphism in the Gets unit is transported. The timing and conditions of thrusting of the Gets Nappe onto the Br che and the Simme nappes is constrained by stratigraphic and metamorphic data.
Resumo:
In the NW Himalaya of India, high-grade metamorphic rocks of the High Himalayan Crystalline Zone (HHCZ) are exposed as a 50 km large dome along the Miyar and Gianbul valleys. This Gianbul dome is cored by migmatitic paragneiss formed at peak conditions around 750 degreesC and 8 kbar, and symmetrically surrounded by sillimanite, kyanite +/- staurolite, garnet, biotite, and chlorite Barrovian mineral zones. Thermobarometric and structural investigations reveal that the Gianbul dome results from a polyphase tectono-metamorphic evolution. The first phase corresponds to the NE-directed thrusting of the Shikar Beh nappe, that is responsible for the Barrovian prograde metamorphic field gradient in the southern limb of the dome. In the northern limb of the dome, the Barrovian prograde metamorphism is the consequence of a second tectonic phase, associated with the SW-directed thrusting of the Nyimaling-Tsarap nappe. Following these crustal thickening events, exhumation and doming of the HHCZ high-grade rocks were controlled by extension along the north-dipping Zanskar Shear Zone, in the frontal part of the Nyimaling-Tsarap nappe, as well as by coeval to late extension along the south-dipping Khanjar Shear Zone, in the southern limb of the Gianbul dome. Rapid syn-convergence extension along both of these detachments induced a nearly isothermal decompression, resulting in a high-temperature/low-pressure metamorphic overprint, as well as enhanced partial melting. Such a rapid exhumation within a compressional orogenic context appears unlikely to be controlled solely by granitic diapirism. Alternatively, large-scale doming in the Himalaya could reflect a sub-vertical ductile extrusion of partially melted rocks.
Resumo:
The eclogite facies assemblage K-feldspar-jadeite-quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite + quartz = albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm(63)Prp(26)Grs(10))-K-feldspar-plagioclase-biotite +/- sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm(50)Prp(14)Grs(35))-jadeite (Jd(80-97)Di(0-4)Hd(0-8)Acm(0-7))=zoisite-phengite. Plagioclase is replaced by jadeite-zoisite-kyanite-K-feldspar-quartz and biotite is replaced by garnet-phengite or omphacite-kyanite-phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar-jadeite-quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar-jadeite-quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15-21 kbar (+/- 1.6-1.9 kbar) at 550 +/- 50 degrees C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio P-H2O/P-T. The inferred limiting a(H2O) for the assemblage jadeite-kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.
Resumo:
subsequent extension-induced exhumation. Geochronological dating of various Structural, thermobarometric, and geochronological data place limits on the age and tectonic displacement along the Zanskar shear zone, a major north-dipping synorogenic extensional structure separating the high-grade metamorphic sequence of the High Himalayan Crystalline Sequence from the overlying low-grade sedimentary rocks of the Tethyan Himalaya, A complete Barrovian metamorphic succession, from kyanite to biotite zone mineral assemblages, occurs within the I-km-thick Zanskar shear zone. Thermobarometric data indicate a difference In equilibration depths of 12 +/- 3 km between the lower kyanite zone and the garnet zone, which is Interpreted as a minimum estimate for the finite vertical displacement accommodated by the Zanskar shear zone. For the present-day dip of the structure (20 degrees), a simple geometrical model shows that a net slip of 35 +/- 9 km is required to regroup these samples to the same structural level. Because the kyanite to garnet zone rocks represent only part of the Zanskar shear zone, and because its original dip may have been less than the present-day dip, these estimates fur the finite displacement represent minimum values. Field relations and petrographic data suggest that migmatization and associated leucogranite intrusion in the footwall of the Zanskar shear zone occurred as a continuous profess starting at the Barrovian metamorphic peak and lasting throughout the subsequent extension-induced exhumation. Geochronological dataing of various leucogranitic plutons and dikes in the Zanskar shear zone footwall indicates that the main ductile shearing along the structure ended by 19.8 Ma and that extension most likely initiated shortly before 22.2 Ma.
Resumo:
We combined structural analysis, thermobarometry and oxygen isotope geochemistry to constrain the evolution of kyanite and/or andalusite-bearing quartz veins from the amphibolite facies metapelites of the Simano nappe, in the Central Alps of Switzerland. The Simano nappe records a complex polyphase tectonic evolution associated with nappe stacking during Tertiary Alpine collision (D1). The second regional deformation phase (132) is responsible for the main penetrative schistosity and mineral lineation, and formed during top-to-the-north thrusting. During the next stage of deformation (D3) the aluminosilicate-bearing veins formed by crystallization in tension gashes, in tectonic shadows of boudins, as well as along shear bands associated with top-to-the-north shearing. D2 and D3 are coeval with the Early Miocene metamorphic peak, characterised by kyanite + staurolite + garnet + biotite assemblages in metapelites. The peak pressure (P) and temperature (T) conditions recorded are constrained by multiple-equilibrium thermobarometry at 630 +/- 20 degrees C and 8.5 +/- 1 kbar (similar to 27 km depth), which is in agreement with oxygen isotope thermometry indicating isotopic equilibration of quartz-kyanite pairs at 670 +/- 50 degrees C. Quartz-kyanite pairs from the aluminosilicate-bearing quartz veins yield equilibration temperatures of 645 +/- 20 degrees C, confirming that the veins formed under conditions near metamorphic peak. Quartz and kyanite from veins and the surrounding metapelites have comparable isotopic compositions. Local intergranular diffusion in the border of the veins controls the mass-transfer and the growth of the product assemblage, inducing local mobilization of SiO2 and Al2O3. Andalusite is absent from the host rocks, but it is common in quartz veins, where it often pseudomorphs kyanite. For andalusite to be stable at T-max, the pressure in the veins must have been substantially lower than lithostatic. An alternative explanation consistent with structural observations would be inheritance by andalusite of the kyanite isotopic signature during polymorphic transformation after the metamorphic peak.
Resumo:
Podiform chromitite bodies occur in highly serpentinized peridotites at Dobromirtsi Ultramafic Massif (Rhodope Mountains, southeastern Bulgaria). The ultramafic body is believed to represent a fragment of Palaeozoic ophiolite mantle. The ophiolite sequence is associated with greenschist - lower-temperature amphibolite facies metamorphosed rocks (biotitic gneisses hosting amphibolite). This association suggests that peridotites, chromitites and metamorphic rocks underwent a common metamorphic evolution. Chromitites at Dobromirtsi have been strongly altered. Their degree of alteration depends on the chromite/silicate ratio and to a lesser extent, on the size of chromitite bodies. Alteration is recorded in individual chromite grains in the form of optical and chemical zoning. Core to rim chemical trends are expressed by MgO- and Al2O3- impoverishment, mainly compensated by FeO and/or Fe2O3 increases. Such chemical variations correspond with three main alteration events. The first one was associated with ocean-floor metamorphism and was characterized by a lizardite replacement of olivine and the absence of chromite alteration. The second event took place during greenchist facies metamorphism. During this event, MgO- and SiO2-rich fluids (derived from low temperature serpentinization of olivine and pyroxenes) reacted with chromite to form chlorite; as a consequence, chromite became altered to a FeO- and Cr2O3-rich, Al2O3-poor chromite. The third event, mainly developed during lower temperature amphibolite facies metamorphism, caused the replacement of the primary and previously altered chromite by Fe2O3-rich chromite (ferritchromite).
Resumo:
Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.
Resumo:
On Ile de Groix, Variscan metamorphic former tholeiitic and alkaline basalts occur as glaucophane-eclogites, blueschists and greenschists in isolated lenses and layers within metapelites. Whole-rock delta O-18(SMOW) values of the metabasites show limited variations (10.4-12.0 parts per thousand) and no systematic differences among rock types and metamorphic grades. This provides no argument for large-scale blueschist-to-greenschist transformation driven by infiltration of externally derived fluids. Metamorphic mineralogical changes should have been triggered by internal fluids. Element variations in interlayered blue- and greenschists can be attributed to magmatic fractionation. Assemblages with garnet, clinopyroxene and glaucophane of a high-pressure/low-temperature (HP-LT) metamorphism M1, and NaCa-amphiboles (barroisite, magnesiohornblende, actinolite) of a medium-pressure/medium-temperature metamorphism M2 crystallized during deformation Dl. Detailed core-rim zonation profiles display increasing and then decreasing Al-IV in glaucophane of M1. NaCa-amphiboles of M2, mantling glaucophane and crystallized in porphyroblasts, show first increasing, then decreasing, Al-IV and Al-IV. Empirically calibrated thermobarometers allowed P-T path reconstructions. In glaucophane-eclogites of a metamorphic zone I, a prograde evolution to M1 peak conditions at 400-500 degreesC/10-12 kbar was followed by a retrograde P-T path within the glaucophane stability field. The subsequent M2 evolution was again prograde up to > 600 degreesC at 8 kbar and then retrograde. Similarly, in metamorphic zones II and III, prograde and retrograde paths of MI and M2 at lower maximal temperatures and pressures exist. The almost complete metamorphic cycle during M2 signalizes that the HP-LT rocks escaped from an early erosion by a moderate second burial event and explains the longlasting slow uplift with low average cooling rates.
Resumo:
Palm swanp formations, the so-called veredas, typically occur in the Brazilian biome known as "Cerrado" (savanna-like vegetation), especially on flattened areas or tablelands (chapadas). The aim of this study was to characterize the mineralogy and micromorphology of soil materials from a representative toposequence of the watershed of the vereda Lagoa do Leandro, located in Minas Novas, state of Minas Gerais, Brazil, on plains in the region of the upper Jequitinhonha valley, emphasizing essential aspects of their genesis and landscape evolution. The toposequence is underlain by rocks of the Macaúbas group and covered with detrital and metamorphic rocks (schists of Proterozoic diamictites). The soil profiles were first pedologically described; samples of the disturbed and undisturbed soils were collected from all horizons for further micromorphological and mineralogical analyses. The mineralogical analysis was mainly based on powder X ray diffractometry (XRD) and micromorphological descriptions of thin sections under a petrographic microscope. The soils from the bottom to the top of this toposequence were classified as: Typic Albaquult (GXbd), Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC"), Xanthic Haplustox (LA) and Typic Haplustox (LVA). The clay mineralogy of all soils was found to be dominated by kaolinite. In soil of LA and LVA, the occurrence of goethite, gibbsite, and anatase was evidenced; "LAC" also contained anatase and the GXbd, illite, anatase, and traces of vermiculite. The micromorphological analyses of the LVA, LA and "LAC" soils showed the prevalence of a microaggregate-like or granular microstructure, and aggregate porosity has a stacked/packed structure, which is typical of Oxisols. A massive structure was observed in GXbd material, with the presence of illuviation cutans of clay minerals and iron compounds. Paleogleissolos, which are strongly weathered, due to the action of the excavating fauna , and resulted in the present "LAC". The GXbd at the base of the vereda preserved the physical, mineralogical and micromorphological properties that are typical of a pedogenesis with a strong influence of long dry periods.
Resumo:
The highest grade of metamorphism and associated structural elements in orogenic belts may be inherited from earlier orogenic events. We illustrate this point using magmatic and metamorphic rocks from the southern steep belt of the Lepontine Gneiss Dome (Central Alps). The U-Pb zircon ages from an anatectic granite at Verampio and migmatites at Corcapolo and Lavertezzo yield 280-290 Ma, i.e., Hercynian ages. These ages indicate that the highest grade of metamorphism in several crystalline nappes of the Lepontine Gneiss Dome is pre-Alpine. Alpine metamorphism reached sufficiently high grade to reset the Rb-Sr and K-Ar systematics of mica and amphibole, but generally did not result in crustal melting, except in the steep belt to the north of the Insubric Line, where numerous 29 to 26 Ma old pegmatites and aplites had intruded syn- and post-kinematically into gneisses of the ductile Simplon Shear Zone. The emplacement age of these pegmatites gives a minimum estimate for the age of the Alpine metamorphic peak in the Monte Rosa nappe. The U-Pb titanite ages of 33 to 31 Ma from felsic porphyritic veins represent a minimum-age estimate for Alpine metamorphism in the Sesia Zone. A porphyric vein emplaced at 448 +/- 5 Ma (U-Pb monazite) demonstrates that there existed a consolidated Caledonian basement in the Sesia Zone.
Resumo:
The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O), supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste). The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol), which was incubated for 100 days, at 70 % (w/w) moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB) were the silicate rocks that most influenced soil pH, while the mining byproduct (MB) led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.