965 resultados para Ricardo Zelarayán
Resumo:
Priceite is a calcium borate mineral and occurs as white crystals in the monoclinic pyramidal crystal system. We have used a combination of Raman spectroscopy with complimentary infrared spectroscopy and scanning electron microscopy with Energy-dispersive X-ray Spectroscopy (EDS) to study the mineral priceite. Chemical analysis shows a pure phase consisting of B and Ca only. Raman bands at 956, 974, 991, and 1019 cm−1 are assigned to the BO stretching vibration of the B10O19 units. Raman bands at 1071, 1100, 1127, 1169, and 1211 cm−1 are attributed to the BOH in-plane bending modes. The intense infrared band at 805 cm−1 is assigned to the trigonal borate stretching modes. The Raman band at 674 cm−1 together with bands at 689, 697, 736, and 602 cm−1 are assigned to the trigonal and tetrahedral borate bending modes. Raman spectroscopy in the hydroxyl stretching region shows a series of bands with intense Raman band at 3555 cm−1 with a distinct shoulder at 3568 cm−1. Other bands in this spectral region are found at 3221, 3385, 3404, 3496, and 3510 cm−1. All of these bands are assigned to water stretching vibrations. The observation of multiple bands supports the concept of water being in different molecular environments in the structure of priceite. The molecular structure of a natural priceite has been assessed using vibrational spectroscopy.
Resumo:
This text elaborates on the city as cultural construct and representation and Lisbocópio, the installation by Pancho Guedes and Ricardo Jacinto in the context of the Official Representation of Portugal at the 10. Mostra Internazionale di Architettura-La Biennale di Venezia.
Resumo:
The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm−1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm−1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.
Resumo:
The mineral tunisite has been studied by using a combination of scanning electron microscopy with energy dispersive X-ray fluorescence and vibrational spectroscopy. Chemical analysis shows the presence of Na, Ca, Al and Cl. SEM shows a pure single phase. An intense Raman band at 1127 cm−1 is assigned to the carbonate ν1 symmetric stretching vibration and the Raman band at 1522 cm−1 is assigned to the ν3 carbonate antisymmetric stretching vibration. Infrared bands are observed in similar positions. Multiple carbonate bending modes are found. Raman bands attributable to AlO stretching and bending vibrations are observed. Two Raman bands at 3419 and 3482 cm−1 are assigned to the OH stretching vibrations of the OH units. Vibrational spectroscopy enables aspects of the molecular structure of the carbonate mineral tunisite to be assessed.
Resumo:
In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm−1 are assigned to the CO32− ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm−1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm−1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.
Resumo:
Purpose – The purpose of this paper is to examine empirically, an industry development paradox, using embryonic literature in the area of strategic supply chain management, together with innovation management literature. This study seeks to understand how, forming strategic supply chain relationships, and developing strategic supply chain capability, influences beneficial supply chain outcomes expected from utilizing industry-led innovation, in the form of electronic business solutions using the internet, in the Australian beef industry. Findings should add valuable insights to both academics and practitioners in the fields of supply chain innovation management and strategic supply chain management, and expand knowledge to current literature. Design/methodology/approach – This is a quantitative study comparing innovative and non-innovative supply chain operatives in the Australian beef industry, through factor analysis and structural equation modeling using PAWS Statistical V18 and AMOS V18 to analyze survey data from 412 respondents from the Australian beef supply chain. Findings – Key findings are that both innovative and non-innovative supply chain operators attribute supply chain synchronization as only a minor indicator of strategic supply chain capability, contrary to the literature; and they also indicate strategic supply chain capability has a minor influence in achieving beneficial outcomes from utilizing industry-led innovation. These results suggest a lack of coordination between supply chain operatives in the industry. They also suggest a lack of understanding of the benefits of developing a strategic supply chain management competence, particularly in relation to innovation agendas, and provides valuable insights as to why an industry paradox exists in terms of the level of investment in industry-led innovation, vs the level of corresponding benefit achieved. Research limitations/implications – Results are not generalized due to the single agribusiness industry studied and the single research method employed. However, this provides opportunity for further agribusiness studies in this area and also studies using alternate methods, such as qualitative, in-depth analysis of these factors and their relationships, which may confirm results or produce different results. Further, this study empirically extends existing theoretical contributions and insights into the roles of strategic supply chain management and innovation management in improving supply chain and ultimately industry performance while providing practical insights to supply chain practitioners in this and other similar agribusiness industries. Practical implications – These findings confirm results from a 2007 research (Ketchen et al., 2007) which suggests supply chain practice and teachings need to take a strategic direction in the twenty-first century. To date, competence in supply chain management has built up from functional and process orientations rather than from a strategic perspective. This study confirms that there is a need for more generalists that can integrate with various disciplines, particularly those who can understand and implement strategic supply chain management. Social implications – Possible social implications accrue through the development of responsible government policy in terms of industry supply chains. Strategic supply chain management and supply chain innovation management have impacts to the social fabric of nations through the sustainability of their industries, especially agribusiness industries which deal with food safety and security. If supply chains are now the competitive weapon of nations then funding innovation and managing their supply chain competitiveness in global markets requires a strategic approach from everyone, not just the industry participants. Originality/value – This is original empirical research, seeking to add value to embryonic and important developing literature concerned with adopting a strategic approach to supply chain management. It also seeks to add to existing literature in the area of innovation management, particularly through greater understanding of the implications of nations developing industry-wide, industry-led innovation agendas, and their ramifications to industry supply chains.
Resumo:
The mineral series triplite-zwieselite with theoretical formula (Mn2+)2(PO4)(F)-(Fe2+)2(PO4)(F) from the El Criolo granitic pegmatite, located in the Eastern Pampean Ranges of Córdoba Province, was studied using electron microprobe, thermogravimetry, and Raman and infrared spectroscopy. The analysis of the mineral provided a formula of (Fe1.00, Mn0.85, Ca0.08, Mg0.06)∑2.00(PO4)1.00(F0.80, OH0.20)∑1.00. An intense Raman band at 981 cm−1 with a shoulder at 977 cm−1 is assigned to the ν1 symmetric stretching mode. The observation of two bands for the phosphate symmetric stretching mode offers support for the concept that the phosphate units in the structure of triplite-zwieselite are not equivalent. Low-intensity Raman bands at 1012, 1036, 1071, 1087, and 1127 cm−1 are assigned to the ν3 antisymmetric stretching modes. A set of Raman bands at 572, 604, 639, and 684 cm−1 are attributed to the ν4 out-of-plane bending modes. A single intense Raman band is found at 3508 cm−1 and is assigned to the stretching vibration of hydroxyl units. Infrared bands are observed at 3018, 3125, and 3358 cm−1 and are attributed to water stretching vibrations. Supplemental materials are available for this article. Go to the publisher's online edition of Spectroscopy Letters to view the supplemental file.
Resumo:
Gilalite is a copper silicate mineral with a general formula of Cu5Si6O17 · 7H2O. The mineral is often found in association with another copper silicate mineral, apachite, Cu9Si10O29 · 11H2O. Raman and infrared spectroscopy have been used to characterize the molecular structure of gilalite. The structure of the mineral shows disorder, which is reflected in the difficulty of obtaining quality Raman spectra. Raman spectroscopy clearly shows the absence of OH units in the gilalite structure. Intense Raman bands are observed at 1066, 1083, and 1160 cm−1. The Raman band at 853 cm−1 is assigned to the –SiO3 symmetrical stretching vibration and the low-intensity Raman bands at 914, 953, and 964 cm−1 may be ascribed to the antisymmetric SiO stretching vibrations. An intense Raman band at 673 cm−1 with a shoulder at 663 cm−1 is assigned to the ν4 Si-O-Si bending modes. Raman spectroscopy complemented with infrared spectroscopy enabled a better understanding of the molecular structure of gilalite.
Resumo:
The lack of adequate disease surveillance systems in Ebola-affected areas has both reduced the ability to respond locally and has increased global risk. There is a need to improve disease surveillance in vulnerable regions, and digital surveillance could present a viable approach.
Resumo:
Influenza is associated with substantial disease burden [ 1]. Development of a climate-based early warning system for in fluenza epidemics has been recommended given the signi fi - cant association between climate variability and influenza activity [2]. Brisbane is a subtropical city in Australia and offers free in fluenza vaccines to residents aged ≥65 years considering their high risks in developing life-threatening complications, especially for in fluenza A predominant seasons. Hong Kong is an international subtropical city in Eastern Asia and plays a crucial role in global infectious diseases transmission dynamics via the international air transportation network [3, 4]. We hypothesized that Hong Kong in fluenza surveillance data could provide a signal for in fluenza epidemics in Brisbane [ 4]. This study aims to develop an epidemic forecasting model for influenza A in Brisbane elders, by combining climate variability and Hong Kong in fluenza A surveillance data. Weekly numbers of laboratoryconfirmed influenza A positive isolates for people aged ≥65 years from 2004 to 2009 were obtained for Brisbane from Queensland Health, Australia, and for Hong Kong from Queen Mary Hospital (QMH). QMH is the largest public hospital located in Hong Kong Island, and in fluenza surveillance data from this hospital have been demonstrated to be representative for influenza circulation in the entirety of Hong Kong [ 5]. The Brisbane in fluenza A epidemics occurred during July –September, whereas the Hong Kong in fluenza A epidemics occurred during February –March and May –August.
Resumo:
Raman and infrared spectra of the uranyl mineral phurcalite, Ca2(UO2)3O2(PO4)2⋅7H2O, from Red Canyon, Utah, USA, were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (PO4)3− units and to the stretching and bending vibrations and libration modes of water molecules. Approximate lengths of U–O in (UO2)2+ and O–H⋯O hydrogen bond lengths were inferred from observed stretching vibrations. The presence of structurally nonequivalent U6+ and P5+ was inferred from the number of corresponding stretching bands of (UO2)2+ and (PO4)3− units observed in the Raman and infrared spectra..