976 resultados para Respiratory organs
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Mortality of the acute respiratory distress syndrome (ARDS) remains extremely high and only few evidence-based specific treatments are currently available. Protective mechanical ventilation has emerged as the comer stone of the management of ARDS to avoid the occurrence of ventilation-induced lung injuries (VILI). Mechanical ventilation in the prone position has often been considered as a rescue therapy reserved to refractory hypoxemia. Since the publication of the PROSEVA study in 2013, early prone positioning for mechanical ventilation should be recommended to improve survival of patients with severe ARDS. In this article, both the theoretical and practical aspects of mechanical ventilation in prone position are reviewed.
Resumo:
Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
Resumo:
BACKGROUND: Acute lower respiratory tract diseases are an important cause of mortality in children in resource-limited settings. In the absence of pulse oximetry, clinicians rely on clinical signs to detect hypoxaemia. OBJECTIVE: To assess the diagnostic value of clinical signs of hypoxaemia in children aged 2 months to 5 years with acute lower respiratory tract disease. METHODS: Seventy children with a history of cough and signs of respiratory distress were enrolled. Three experienced physicians recorded clinical signs and oxygen saturation by pulse oximetry. Hypoxaemia was defined as oxygen saturation <90%. Clinical predictors of hypoxaemia were evaluated using adjusted diagnostic odds ratios (aDOR). RESULTS: There was a 43% prevalence of hypoxaemia. An initial visual impression of poor general status [aDOR 20·0, 95% CI 3·8-106], severe chest-indrawing (aDOR 9·8, 95% CI 1·5-65), audible grunting (aDOR 6·9, 95% CI 1·4-25) and cyanosis (aDOR 26·5, 95% CI 1·1-677) were significant predictors of hypoxaemia. CONCLUSION: In children under 5 years of age, several simple clinical signs are reliable predictors of hypoxaemia. These should be included in diagnostic guidelines.
Resumo:
Nine children surviving severe adult respiratory distress syndrome were studied 0.9 to 4.2 years after the acute illness. They had received artificial ventilation for a mean of 9.4 days, with an Fio2 greater than 0.5 during a mean time of 34 hours and maximal positive end expiratory pressure levels in the range of 8 to 20 cm H2O. Three children had recurrent respiratory symptoms (moderate exertional dyspnea and cough), and two had evidence of fibrosis on chest radiographs. All patients had abnormal lung function; the most prominent findings were ventilation inequalities, as judged by real-time moment ratio analysis of multibreath nitrogen washout curves (abnormal in eight of nine patients) and hypoxemia (seven of nine). Lung volumes were less abnormal; one patient had restrictive and two had obstructive disease. A significant correlation between intensive care measures (Fio2 greater than 0.5 in hours and peak inspiratory plateau pressure) and lung function abnormalities (moment ratio analysis and hypoxemia) was found. A possibly increased susceptibility of the pediatric age group to the primary insult or respiratory therapy of adult respiratory distress syndrome is suggested.
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.
Resumo:
BACKGROUND: Open lung biopsy (OLB) is helpful in the management of patients with acute respiratory distress syndrome (ARDS) of unknown etiology. We determine the impact of surgical lung biopsies performed at the bedside on the management of patients with ARDS. METHODS: We reviewed all consecutive cases of patients with ARDS who underwent a surgical OLB at the bedside in a medical intensive care unit between 1993 and 2005. RESULTS: Biopsies were performed in 19 patients mechanically ventilated for ARDS of unknown etiology despite extensive diagnostic process and empirical therapeutic trials. Among them, 17 (89%) were immunocompromised and 10 patients experienced hematological malignancies. Surgical biopsies were obtained after a median (25%-75%) mechanical ventilation of 5 (2-11) days; mean (+/-SD) Pao(2)/Fio(2) ratio was 119.3 (+/-34.2) mm Hg. Histologic diagnoses were obtained in all cases and were specific in 13 patients (68%), including 9 (47%) not previously suspected. Immediate complications (26%) were local (pneumothorax, minimal bleeding) without general or respiratory consequences. The biopsy resulted in major changes in management in 17 patients (89%). It contributed to a decision to limit care in 12 of 17 patients who died. CONCLUSION: Our data confirm that surgical OLB may have an important impact on the management of patients with ARDS of unknown etiology after extensive diagnostic process. The procedure can be performed at the bedside, is safe, and has a high diagnostic yield leading to major changes in management, including withdrawal of vital support, in the majority of patients.
Resumo:
Introduction: Bioaerosols such as grain dust, via biologically active agents, elicit local inflammation and direct immunological reactions within the human respiratory system. Workplace-dependent exposure to grain dust (GD) may thus induce asthma, chronic bronchitis, and hypersensitivity pneumonitis. The aim of this study is to assess the clinical impact of occupational exposure to GD and to determine quantitative biological markers of bioaerosol exposure in grain workers. Methods: This longitudinal study has been conducted from summer 2012, to summer 2013, comprising 6 groups of 30 active workers with different GD exposure patterns (4 groups of grain workers, 2 control groups). After obtaining informed consent, two evaluations at high- and low-exposing seasons take place, during which an occupational history and a detailed medical history are questionnaire-assessed, lung function is evaluated by spirometry, airway inflammation is measured by exhaled nitric oxide (eNO), and specific blood IgG and IgE are titrated. The preliminary results presented hereafter are those of two of the four exposed groups, namely harvesters and mill workers, compared to the control groups, at first assessment (n=100). Results: Mean age is 38.4 [years]; 98% are male. Exposed groups differ from controls (p<0.05) in daily contact with animals (57% vs. 40%) and active smoking (39% vs. 11%). Grain workers have more respiratory (50%), nasal (57%), ocular (45%), dermatologic (36%) and systemic (20%) occupational symptoms than controls (6.4%, 19%, 16%, 6.4%, 1.6% respectively, p<0.05). Lower mean peak-expiratory-flow (PEF) values (96.1 ± 18.9 vs. 108.2 ± 17.4 [% of predicted], p<0.05) and eNO values (13.9 ± 9.6 vs. 20.5 ± 14.7 [ppm], p<0.05) are observed in the exposed groups. Conclusion: Preliminary results show a higher prevalence of clinical symptoms and a lower mean PEF value in the exposed groups. Detailed supplementary analyses are pending.
Resumo:
The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.
Resumo:
Background Respiratory viruses are the most frequent cause of febrile illnesses in infants and young children but few investigations have assessed their impact and epidemiology in Africa . We investigated their rate in febrile outpatient children attending in Tanzania. Methods Children aged 2 months -10 years with fever >38 _C were recruited prospectively between April and December 2008. Medical history and clinical examination were recorded in a standardized fashion and nasopharyngeal swabs analyzed for the presence of 12 viruses by real-time PCR (FLUAV, FLUBV, RSV, MPV, HPIV-1/3, four types of HCoV, HBoV, PIC and HAdV). Ct values were used to provide semi-quantitative viral loads.Results Of 1005 febrile children enrolled, 623 (62%) had respiratory symptoms (URTI in 66%, bronchiolitis in 7% and clinical pneumonia in 27%); 156 (16%) had febrile illness that remained of unspecified etiology and 226 (22%) had other infectious diseases and no ARI (62 malaria, 56 gastroenteritis, 36 urinary tract and 72 others). The proportions of patients with at least one respiratory virus were 70%, 61% and 47% (Pvalue < 0.001) in these three groups. When excluding picornavirus and adenovirus these proportions were 48%, 24% and 26% (P-value < 0.001). Apart from picornavirus and adenovirus, influenza A and B viruses were the most frequent followed by coronavirus and RSV. The proportion of children with presumably high viral titers (Ct < 25) was higher in the group with respiratory symptoms (31%) than in the two other groups (21% and 16%). Influenza genotyping revealed strains that were similar to the ones circulating elsewhere in the world.Conclusion In African children with febrile illness, the prevalence of respiratory viruses, especially influenza A and B, is high particularly in the presence of respiratory symptoms, but also, although less so, in those with unspecified etiology or other infectious diseases. This highlights that these viruses are commonly circulating in Tanzanian children.
Resumo:
The forced oscillation technique (FOT) is a method for non-invasively assessing respiratory mechanics that is applicable both in paralysed and non-paralysed patients. As the FOT requires a minimal modification of the conventional ventilation setting and does not interfere with the ventilation protocol, the technique is potentially useful to monitor patient mechanics during invasive and noninvasive ventilation. FOT allows the assessment of the respiratory system linearity by measuring resistance and reactance at different lung volumes or end-expiratory pressures. Moreover, FOT allows the physician to track the changes in patient mechanics along the ventilation cycle. Applying FOT at different frequencies may allow the physician to interpret patient mechanics in terms of models with pathophysiological interest. The current methodological and technical experience make possible the implementation of portable and compact computerised FOT systems specifically addressed to its application in the mechanical ventilation setting.
Resumo:
The aim of this work was to develop a low-cost circuit for real-time analog computation of the respiratory mechanical impedance in sleep studies. The practical performance of the circuit was tested in six patients with obstructive sleep apnea. The impedance signal provided by the analog circuit was compared with the impedance calculated simultaneously with a conventional computerized system. We concluded that the low-cost analog circuit developed could be a useful tool for facilitating the real-time assessment of airway obstruction in routine sleep studies.
Resumo:
Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.