998 resultados para Respiratory metabolism
Resumo:
Background: Chronic mountain sickness (CMS), which is characterised by hypoxemia, erythrocytosis and pulmonary hypertension, is a major public health problem in high-altitude dwellers. The only existing treatment is descent to low altitude, an option that for social reasons almost never exists. Sleep disordered breathing may represent an underlying mechanism. We recently found that in mountaineers increasing the respiratory dead space markedly improves sleep disordered breathing. The aim of the present study was to assess the effects of this procedure on sleep disordered breathing in patients with CMS. Methods: In 10 male Bolivian high-altitude dwellers (mean ± SD age, 59 ± 9 y) suffering from CMS (haemoglobin >20 g/L) full night sleep recordings (Embletta, RespMed) were obtained in La Paz (3600 m). In random order, one night was spent with a 500 ml increase in dead space through a custom designed full face mask and the other night without it. Exclusion criteria were: secondary erythrocytosis, smoking, drug intake, acute infection, cardio- pulmonary or neurologic disease and travelling to low altitude in the preceding 6 months. Results: The major new finding was that added dead space dramatically improved sleep disordered breathing in patients suffering from CMS. The apnea/hypopnea index decreased by >50% (from 34.5 ± 25.0 to 16.8 ± 14.9, P = 0.003), the oxygen desaturation index decreased from 46.2 ± 23.0 to 27.2 ± 20.0 (P = 0.0004) and hypopnea index from 28.8 ± 20.9 to 16.3 ± 14.0 (P = 0.01), whereas nocturnal oxygen saturation increased from 79.8 ± 3.6 to 80.9 ± 3.0% (P = 0.009). The procedure was easily accepted and well tolerated. Conclusion: Here, we show for the very first time that an increase in respiratory dead space through a fitted mask dramatically improves nocturnal breathing in high-altitude dwellers suffering from CMS. We speculate that when used in the long-term, this procedure will improve erythrocytosis and pulmonary hypertension and offer an inexpensive and easily implementable treatment for this major public health problem.
A rare cause of acute respiratory failure and elevated eosinophils in broncho-alveolar lavage fluid.
Resumo:
This study presents a first attempt to extend the “Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM)” approach to a spatial dimension using GIS techniques in the Metropolitan area of Barcelona. We use a combination of census and commercial databases along with a detailed land cover map to create a layer of Common Geographic Units that we populate with the local values of human time spent in different activities according to MuSIASEM hierarchical typology. In this way, we mapped the hours of available human time, in regards to the working hours spent in different locations, putting in evidence the gradients in spatial density between the residential location of workers (generating the work supply) and the places where the working hours are actually taking place. We found a strong three-modal pattern of clumps of areas with different combinations of values of time spent on household activities and on paid work. We also measured and mapped spatial segregation between these two activities and put forward the conjecture that this segregation increases with higher energy throughput, as the size of the functional units must be able to cope with the flow of exosomatic energy. Finally, we discuss the effectiveness of the approach by comparing our geographic representation of exosomatic throughput to the one issued from conventional methods.
Resumo:
Free amino acids (AAs) in human plasma are derivatized with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) and analyzed by capillary electrophoresis (CE) with laser induced fluorescence (LIF) detection. The labeling procedure is significantly improved over results reported previously. Derivatization can be completed in 40 min, with concentrations as low as 4 x 10(-8) M successfully labeled in favourable cases. Twenty-nine AAs (including 2 internal standards) are identified and can be reproducibly separated in 70 min. Migration time RSD values for 23 of these AAs were calculated and found in the range from 0.5 to 4%. The rapid derivatization procedure and the resolution obtained in the separation are sufficient for a semi-quantitative, emergency diagnosis of several inborn errors of metabolism (IEM). Amino acid profiles for both normal donor plasma samples and plasma samples of patients suffering from phenylketonuria, tyrosinemia, maple syrup urinary disease, hyperornithinemia, and citrullinemia are studied.
Resumo:
In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. FROM THE CLINICAL EDITOR: By correlating electron microscopy and ultra-high resolution ion microprobe imaging of tissue from fasting mice injected with (13)C-labeled glucose, the authors demonstrate a method to image glycogen metabolism at the nanometer scale.
Resumo:
To determine the mechanisms that prevent an increase in gluconeogenesis from increasing hepatic glucose output, six healthy women were infused with [1-13C]fructose (22 mumol.kg-1.min-1), somatostatin, insulin, and glucagon. In control experiment, non-13C-enriched fructose was infused at the same rate without somatostatin, and [U-13C]glucose was infused to measure specifically plasma glucose oxidation. Endogenous glucose production (EGP, [6,6-2H]glucose), net carbohydrate oxidation (CHOox, indirect calorimetry), and fructose oxidation (13CO2) were measured. EGP rate did not increase after fructose infusion with (13.1 +/- 1.2 vs. 12.9 +/- 0.3 mumol.kg-1.min-1) and without (10.3 +/- 0.5 vs. 9.7 +/- 0.5 mumol.kg-1.min-1) somatostatin, despite the fact that gluconeogenesis increased. Nonoxidative fructose disposal, corresponding mainly to glycogen synthesis, was threefold net glycogen deposition, the latter calculated as fructose infusion minus CHOox (14.8 +/- 1.1 and 4.3 +/- 2.0 mumol.kg-1.min-1). It is concluded that 1) the mechanism by which EGP remains constant when gluconeogenesis from fructose increases is independent of changes in insulin and 2) simultaneous breakdown and synthesis of glycogen occurred during fructose infusion.
Resumo:
Rationale: Peroxisome proliferator activated receptor (PPAR)-beta/delta is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-beta/delta in sepsis is unknown. Objectives: We investigated the role of PPAR-beta/delta in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Methods: Wild-type (WT) and PPAR-beta/delta knockout (1(0) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-beta/delta agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-beta/delta antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660. Measurements and Main Results: In PPAR-beta/delta KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3 beta; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-kappa B and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-beta/delta antagonist GSK0660. Conclusions: PPAR-beta/delta protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3 beta and NF-kappa B.
Resumo:
Many aspects of physiology and behavior in organisms from bacteria to man are subjected to circadian regulation. Indeed, the major function of the circadian clock consists in the adaptation of physiology to daily environmental change and the accompanying stresses such as exposition to UV-light and food-contained toxic compounds. In this way, most aspects of xenobiotic detoxification are subjected to circadian regulation. These phenomena are now considered as the molecular basis for the time-dependence of drug toxicities and efficacy. However, there is now evidences that these toxic compounds can, in turn, regulate circadian gene expression and thus influence circadian rhythms. As food seems to be the major regulator of peripheral clock, the possibility that food-contained toxic compounds participate in the entrainment of the clock will be discussed.
Resumo:
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.
Resumo:
HYPOTHESIS: Liver transplantation results in hepatic denervation. This may produce alterations of liver energy and substrate metabolism, which may contribute to weight gain after liver transplantation. DESIGN: Prospective clinical study. SETTING: Liver transplantation clinics in a university hospital. PATIENTS: Seven nondiabetic patients with cirrhosis were recruited while on a waiting list for liver transplantation. Seven healthy subjects were recruited as controls. INTERVENTION: Orthotopic liver transplantation. MAIN OUTCOME MEASURES: Evaluation of energy and substrate metabolism after ingestion of a glucose load with indirect calorimetry was performed before, 2 to 6 weeks after, and 5 to 19 months after transplantation. Whole-body glucose oxidation and storage and glucose-induced thermogenesis were calculated. RESULTS: Patients with cirrhosis had modestly elevated resting energy expenditure and normal glucose-induced thermogenesis and postprandial glucose oxidation and storage. These measures remained unchanged after liver transplantation despite a significant increase in postprandial glycemia. Patients, however, gained an average of 3 kg of body weight after 5 to 19 months compared with their weight before transplantation. CONCLUSION: Liver denervation secondary to transplantation does not lead to alterations of energy metabolism after ingestion of a glucose load.
Resumo:
A forecast of nonepidemic morbidity due to acute respiratory infections were carry out by using time series analysis. The data consisted of the weekly reports of medical patient consultation from ambulatory facilities from the whole country. A version of regression model was fitted to the data. Using this approach, we were able to detect the starting data of the epidemic under routine surveillance conditions for various age groups. It will be necessary to improve the data reporting system in order to introduce these procedures at the local health center level, as well as on the provincial level.
Resumo:
Chlamydia-related bacteria, new members of the order Chlamydiales, are suggested to be associated with respiratory disease. We used real-time PCR to investigate the prevalence of Parachlamydia acanthamoebae, Protochlamydia spp., Rhabdochlamydia spp., Simkania negevensis and Waddlia chondrophila in samples taken from patients with suspected respiratory tract infections. Of the 531 samples analyzed, the subset of 136 samples contained 16 (11.8%) samples positive for Rhabdochlamydia spp. DNA. P. acanthamoebae, Protochlamydia spp., S. negevensis and W. chondrophila DNA were not detected among the respiratory samples investigated. These results suggest an association of Rhabdochlamydia spp. with respiratory disease.