990 resultados para Residue lignocellulosic
Resumo:
Background: The venoms of Conus snails contain small, disulfide-rich inhibitors of voltage-dependent sodium channels. Conotoxin GS is a 34-residue polypeptide isolated from Conus geographus that interacts with the extracellular entrance of skeletal muscle sodium channels to prevent sodium ion conduction. Although conotoxin GS binds competitively with mu conotoxin GIIIA to the sodium channel surface, the two toxin types have little sequence identity with one another, and conotoxin GS has a four-loop structural framework rather than the characteristic three-loop mu-conotoxin framework. The structural study of conotoxin GS will form the basis for establishing a structure-activity relationship and understanding its interaction with the pore region of sodium channels. Results: The three-dimensional structure of conotoxin GS was determined using two-dimensional NMR spectroscopy. The protein exhibits a compact fold incorporating a beta hairpin and several turns. An unusual feature of conotoxin GS is the exceptionally high proportion (100%) of cis-imide bond geometry for the three proline or hydroxyproline residues. The structure of conotoxin GS bears little resemblance to the three-loop mu conotoxins, consistent with the low sequence identity between the two toxin types and their different structural framework. However, the tertiary structure and cystine-knot motif formed by the three disulfide bonds is similar to that present in several other polypeptide ion channel inhibitors. Conclusions: This is the first three-dimensional structure of a 'four-loop' sodium channel inhibitor, and it represents a valuable new structural probe for the pore region of voltage-dependent sodium channels. The distribution of amino acid sidechains in the structure creates several polar and charged patches, and comparison with the mu conotoxins provides a basis for determining the binding surface of the conotoxin GS polypeptide.
Resumo:
A family of potent insecticidal toxins has recently been isolated from the venom of Australian funnel web spiders. Among these is the 37-residue peptide omega-atracotoxin-HV1 (omega-ACTX-HV1) from Hadronyche versuta. We have chemically synthesized and folded omega-ACTX-HV1, shown that it is neurotoxic, ascertained its disulphide bonding pattern, and determined its three-dimensional solution structure using NMR spectroscopy. The structure consists of a solvent-accessible beta-hairpin protruding from a disulphide-bonded globular core comprising four beta-turns. The three intramolecular disulphide bonds form a cystine knot motif similar to that seen in several other neurotoxic peptides. Despite limited sequence identity, omega-ACTX-HV1 displays significant structural homology with the omega-agatoxins and omega-conotoxins, both of which are vertebrate calcium channel antagonists; however, in contrast with these toxins, we show that omega-ACTX-HV1 inhibits insect, but not mammalian, voltage-gated calcium channel currents.
Resumo:
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.
Resumo:
We previously generated a panel of T helper cell 1 (Th1) clones specific for an encephalitogenic peptide of myelin proteolipid protein (PLP) peptide 139-151 (HSLGKWLGHPDKF) that induces experimental autoimmune encephalomyelitis (EAE) upon adoptive transfer. In spite of the differences in their T cell receptor (TCR) gene usage, all these Th1 clones required W144 as the primary and most critical TCR contact residue for the activation. In this study, we determined the TCR contact residues of a panel of Th2/Th0 clones specific for the PLP peptide 139-151 generated either by immunization with the PLP 139-151 peptide with anti-B7-1 antibody or by immunization with an altered peptide Q144. Using alanine-substituted peptide analogues of the native PLP peptide, we show that the Th2 clones have shifted their primary contact residue to the NH2-terminal end of the peptide. These Th2 cells do not show any dependence on the W144, but show a critical requirement for L141/G142 as their major TCR contact residue. Thus, in contrast with the Th1 clones that did not proliferate to A144-substituted peptide, the Th2 clones tolerated a substitution at position 144 and proliferated to A144 peptide. This alternative A144 reactive repertoire appears to have a critical role in the regulation of autoimmune response to PLP 139-151 because preimmunization with A144 to expand the L141/G142-reactive repertoire protects mice from developing EAE induced with the native PLP 139-151 peptide. These data suggest that a balance between two different T cell repertoires specific for same autoantigenic epitope can determine disease phenotype, i.e., resistance or susceptibility to an autoimmune disease.
Resumo:
Conotoxins are small, cysteine-rich peptides isolated from the venom of Conus spp. of predatory marine snails, which selectively target specific receptors and ion channels critical to the functioning of the neuromuscular system. alpha-Conotoxins PnIA and PnIB are both 16-residue peptides (differing in sequence at only two positions) isolated from the molluscivorous snail Conus pennaceus. In contrast to the muscle-selective alpha-conotoxin GI from Conus geographus, PnIA and PnIB block the neuronal nicotinic acetylcholine receptor (nAChR). Here, we describe the crystal structure of PnIB, solved at a resolution of 1.1 Angstrom and phased using the Shake-and-Bake direct methods program. PnIB crystals are orthorhombic and belong to the space group P2(1)2(1)2(1) with the following unit cell dimensions: a = 14.6 Angstrom, b = 26.1 Angstrom, and c = 29.2 Angstrom. The final refined structure of alpha-conotoxin PnIB includes all 16 residues plus 23 solvent molecules and has an overall R-factor of 14.7% (R-free of 15.9%). The crystal structures of the alpha-conotoxins PnIB and PnIA are solved from different crystal forms, with different solvent contents. Comparison of the structures reveals them to be very similar, showing that the unique backbone and disulfide architecture is not strongly influenced by crystal lattice constraints or solvent interactions. This finding supports the notion that this structural scaffold is a rigid support for the presentation of important functional groups. The structures of PnIB and PnIA differ in their shape and surface charge distribution from that of GI.
Resumo:
Galactoglucomannan (GGM) from cultures of Nicotiana plumbaginifolia has Man:Glc:Gal:Ara:Xyl in 1.0:1.1:1.0:0.1:0.04 ratio. Linkage analysis contained 4- and 4,6-Manp, 4-Glcp, terminal Galp and 2-Galp, small amounts and terminal Arap and terminal Xylp, and similar to 0.03 mol acetyl per mol of glucosyl residue. Treatment with alpha- and beta-D-galactosidases showed that the majority of the side-chains were either single Galp-alpha-(1 --> residues or the disaccharide Galp-beta-(1 --> 2)-Galp-alpha-(1 --> linked to O-6 of the 4-Manp residues of the glucomannan backbone. Analysis of the oligosaccharides generated by endo-(1 --> 4)-beta-mannanase digestion confirmed that the GGM comprises a backbone of predominantly alternating --> 4)-D-Manp-beta-(1 --> and --> Lt)-D-Glcp-beta-(1 --> branched at O-6 of 65% of the 4-Manp residues. The major oligosaccharide identified was D-Glcp-beta-(1 --> 4)-[D-Galp-beta-(1 --> 2)-D-Galp-alpha-(1 --> 6)]-D-Manp-beta-(1 --> 4)-D-Glcp-beta-(I --> 4)-[D-Galp-alpha-(1 --> 6)]-D-Manp-beta-(1 --> (27%), and most of the other oligosaccharides produced in significant quantities were based on this structure. (C) 1997 Elsevier Science Ltd.
Resumo:
TRAPS is the most common of the autosomal dominant periodic fever syndromes. It is caused by mutations in the TNFRSF1A gene, which encodes for the type 1 TNF-receptor (TNFR1). We describe here a Brazilian patient with TRAPS associated to a novel TNFRSF1A de novo mutation and the response to anti-TNF therapy. The patient is a 9-year-old girl with recurrent fevers since the age of 3 years, usually lasting 3 to 7 days, and recurring every other week. These episodes are associated with mild abdominal pain, nausea, vomiting and generalized myalgia. Recurrent conjunctivitis and erysipela-like skin lesions in the lower limbs also occur. Laboratory studies show persistent normocytic normochromic anemia, thrombocytosis, elevated erythrocyte sedimentation rate and C-reactive protein. IgD levels are normal. Mutational screening of TNFRSF1A revealed the association of a novel C30F mutation with the common R92Q low-penetrance mutation. The R92Q mutation is seen in 5% of the general population and is associated with an atypical inflammatory phenotype. The patient had a very good response to etanercept, with cessation of fever and normalization of inflammatory markers. Our report expands the spectrum of TNFRSF1A mutations associated with TRAPS, adding further evidence for possible additive effects of a low-penetration R92Q and cysteine residue mutations, and confirms etanercept as an efficacious treatment alternative.
Resumo:
Peptides constitute the largest group of Hymenoptera venom toxins; some of them interact with GPCR, being involved with the activation of different types of leukocytes, smooth muscle contraction and neurotoxicity. Most of these toxins vary from dodecapeptides to tetradecapeptides, amidated at their C-teminal amino acid residue. The venoms of social wasps can also contains some tetra-, penta-, hexa- and hepta-peptides, but just a few of them have been structurally and functionally characterized up to now. Protonectin (ILG-TILGLLKGL-NH(2)) is a polyfunctional peptide, presenting mast cell degranulation, release of lactate dehydrogenase (LDH) from mast cells, antibiosis against Gram-positive and Gram-negative bacteria and chemotaxis for polymorphonucleated leukocytes (PMNL), while Protonectin (1-6) (ILGTIL-NH(2)) only presents chemotaxis for PMNL However, the mixture of Protonectin (1-6) with Protonectin in the molar ratio of 1:1 seems to potentiate the biological activities dependent of the membrane perturbation caused by Protonectin, as observed in the increasing of the activities of mast cell degranulation, LDH releasing from mast cells, and antibiosis. Despite both peptides are able to induce PMNL chemotaxis, the mixture of them presents a reduced activity in comparison to the individual peptides. Apparently, when mixed both peptides seems to form a supra-molecular structure, which interact with the receptors responsible for PMNL chemotaxis, disturbing their individual docking with these receptors. In addition to this, a comparison of the sequences of both peptides suggests that the sequence ILGTIL is conserved, suggesting that it must constitute a linear motif for the structural recognition by the specific receptor which induces leukocytes migration. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
Resumo:
We report the identification of a novel mutation at a highly conserved residue within the N-terminal region of spermine synthase (SMS) in a second family with Snyder-Robinson X-linked mental retardation syndrome ( OMIM 309583). This missense mutation, p.G56S, greatly reduces SMS activity and leads to severe epilepsy and cognitive impairment. Our findings contribute to a better delineation and expansion of the clinical spectrum of Snyder-Robinson syndrome, support the important role of the N-terminus in the function of the SMS protein, and provide further evidence for the importance of SMS activity in the development of intellectual processing and other aspects of human development.
Resumo:
Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. Objective: The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Design: The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. Results: We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g. 2791G>A transition in the last position of exon 4. This nucleotide is also part of 5` intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g. 2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. Conclusions: We describe two novel mutations, g. 4671_4672insC and g. 2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. (J Clin Endocrinol Metab 94: 3481-3485, 2009)
Resumo:
We measured the oral and pharyngeal transit of a paste bolus in 20 patients with Chagas` disease and 21 controls. Each subject swallowed of a 10-ml paste bolus prepared with 50 ml of water and 4.5 g of instant food thickener labeled with 55.5 MBq of 99(m) technetium phytate. After the scintigraphic recording of the transit, we delineated regions of interest (ROI) corresponding to mouth, pharynx, and proximal esophagus. Time-activity curves were generated for each ROI. There was no difference between patients with Chagas` disease and controls with respect to the duration of oral and pharyngeal transit, amount of pharyngeal residue, or flux of bolus entry into the proximal esophagus. The amount of oral residue was higher in patients with Chagas` disease (median = 0.71 ml) than in controls (median = 0.45 ml). The pharyngeal clearance duration was longer in patients with Chagas` disease (median = 0.85 s) than in controls (median = 0.60 s). The oral transit duration of the patients with Chagas` disease and dysphagia (median = 0.55 s, n = 14) was shorter than the oral transit duration of chagasic patients without dysphagia (median = 0.80 s, n = 6). We conclude that when swallowing a paste bolus, patients with Chagas` disease may have an increased amount of oral residue and a longer pharyngeal clearance duration than asymptomatic volunteers.
Resumo:
Bothropstoxin-I (BthTx-I) is a homodimerie Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which lacks hydrolytic activity against phospholipid substrates, yet permeabilizes membranes by a Ca2+- independent mechanism. The interaction of the BthTx-I with model membranes has been studied by intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. Nine separate mutants have been created each with a unique tryptophan residue located at a different position in the interfacial recognition site (IRS) of the protein. The rapid and efficient Ca2+-independent membrane damage against unilamellar liposomes composed of DPPC/DMPA in a 9:1 molar ratio was unaffected by these substitutions. Binding studies revealed low protein affinity for these liposomes and no changes were observed in the ITFE properties. In contrast, the binding of all mutants to DPPC/DMPA liposomes in a 1:1 molar ratio was stronger, and was correlated with altered ITFE properties. The blue-shifted emission spectra and increased emission intensity of mutants at positions 31, 67 and 115-117 in the interface recognition surface of the protein suggest these regions are partially inserted into the membrane. These results are consistent with a model for the Ca2+-independent membrane damaging mechanism that involves a transient interaction of the protein with the outer phospholipid leaflet of the target membrane. (C) 2007 Elsevier Masson SAS. All rights reserved.