791 resultados para Representations of algebras
Resumo:
Tracking the evolution of research in waste recycling science (WRS) can be valuable for environmental agencies, as well as for recycling businesses. Maps of science are visual, easily readable representations of the cognitive structure of a branch of science, a particular area of research or the global spectrum of scientific production. They are generally built upon evidence collected from reliable sources of information, such as patent and scientific publication databases. This study uses the methodology developed by Rafols et al. (2010) to make a “double overlay map” of WRS upon a basemap reflecting the cognitive structure of all journal-published science, for the years 2005 and 2010. The analysis has taken into account the cognitive areas where WRS articles are published and the areas from where it takes its intellectual nourishing, paying special attention to the growing trends of the key areas. Interpretation of results lead to the conclusion that extraction of energy from waste will probably be an important research topic in the future, along with developments in general chemistry and chemical engineering oriented to the recovery of valuable materials from waste. Agricultural and material sciences, together with the combined economics, politics and geography field, are areas with which WRS shows a relevant and ever increasing cognitive relationship.
Resumo:
This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.
In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.
Resumo:
I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.
II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.
Resumo:
We distinguish two general approaches to inner speech (IS) the "format" and the "activity" views and defend the activity view. The format view grounds the utility of IS on features of the representational format of language, and is related to the thesis that the proper function of IS is to make conscious thinking possible. IS appears typically as a product constituted by representations of phonological features. The view also has implications for the idea that passivity phenomena in cognition may be misat-tributed IS. The activity view sees IS as a speaking activity that does not have a proper function in cognition. It simply inherits the array of functions of outer speech. We argue that it is methodologically advisable to start from this variety of uses, which suggests commonalities between internal and external activities. The format view has several problems; it has to deny "unsymbolized thinking"; it cannot easily explain how IS makes thoughts available to consciousness, and it cannot explain those uses of IS where its format features apparently play no role. The activity view not only lacks these problems but also has explanatory advantages: construing IS as an activity allows it to be integrally constituted by its content; the view is able to construe unsymbolized thinking as part of a continuum of phenomena that exploit the same mechanisms, and it offers a simple explanation for the variety of uses of IS
Resumo:
Human subjects easily adapt to single dynamic or visuomotor perturbations. In contrast, when two opposing dynamic or visuomotor perturbations are presented sequentially, interference is often observed. We examined the effect of bimanual movement context on interference between opposing perturbations using pairs of contexts, in which the relative direction of movement between the two arms was different across the pair. When each perturbation direction was associated with a different bimanual context, such as movement of the arms in the same direction versus movement in the opposite direction, interference was dramatically reduced. This occurred over a short period of training and was seen for both dynamic and visuomotor perturbations, suggesting a partitioning of motor learning for the different bimanual contexts. Further support for this was found in a series of transfer experiments. Having learned a single dynamic or visuomotor perturbation in one bimanual context, subjects showed incomplete transfer of this learning when the context changed, even though the perturbation remained the same. In addition, we examined a bimanual context in which one arm was moved passively and show that the reduction in interference requires active movement. The sensory consequences of movement are thus insufficient to allow opposing perturbations to be co-represented. Our results suggest different bimanual movement contexts engage at least partially separate representations of dynamics and kinematics in the motor system.
Resumo:
Humans have the arguably unique ability to understand the mental representations of others. For success in both competitive and cooperative interactions, however, this ability must be extended to include representations of others' belief about our intentions, their model about our belief about their intentions, and so on. We developed a "stag hunt" game in which human subjects interacted with a computerized agent using different degrees of sophistication (recursive inferences) and applied an ecologically valid computational model of dynamic belief inference. We show that rostral medial prefrontal (paracingulate) cortex, a brain region consistently identified in psychological tasks requiring mentalizing, has a specific role in encoding the uncertainty of inference about the other's strategy. In contrast, dorsolateral prefrontal cortex encodes the depth of recursion of the strategy being used, an index of executive sophistication. These findings reveal putative computational representations within prefrontal cortex regions, supporting the maintenance of cooperation in complex social decision making.
Resumo:
We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.
Resumo:
Mode characteristics for two-dimensional equilateral-polygonal microresonators are investigated based on symmetry analysis and finite-difference time-domain numerical simulation. The symmetries of the resonators can be described by the point group C-Nv, accordingly, the confined modes in these resonators can be classified into irreducible representations of the point group C-Nv. Compared with circular resonators, the modes in equilateral-polygonal resonators have different characteristics due to the break of symmetries, such as the split of double-degenerate modes, high field intensity in the center region, and anomalous traveling-wave modes, which should be considered in the designs of the polygonal resonator microlasers or optical add-drop filters.
Resumo:
Modes in equilateral triangle resonator (ETR) are analyzed and classified according to the irreducible representations of the point group C-3v., Both the analytical method based on the far field emission and the numerical method by FDTD technique are used to calculate the quality factors (Q-factors) of the doubly degenerate states in ETR. Results obtained from the two methods are in reasonable agreement. Considering the different symmetry properties of the doubly degenerate eigenstates, we also discuss the ETR joined with an output waveguide at one of the vertices by FDTD technique and the Pade approximation. The variation of Q-factors versus width of output waveguide is analyzed. The numerical results show that doubly degenerate eigenstates of TM0.36 and TM0.38 whose wavelengths are around 1.5 mu m in the resonator with side-length of 5 mu m have the Q-factors larger than 1000 when the width of the output waveguide is smaller than 0.4 mu m. When the width of the output waveguide is set to 0.3 mu m, the symmetrical states that are more efficiently coupled to output waveguide have Q-factors about 8000, which are over 3 times larger than those of asymmetric state.
Resumo:
The effects ofdisk flexibility and multistage coupling on the dynamics of bladed disks with and without blade mistuning are investigated. Both free and forced responses are examined using finite element representations of example single and two-stage rotor models. The reported work demonstrates the importance of proper treatment of interstage (stage-to-stage) boundaries in order to yield adequate capture of disk-blade modal interaction in eigenfrequency veering regions. The modified disk-blade modal interactions resulting from interstage-coupling-induced changes in disk flexibility are found to have a significant impact on (a) tuned responses due to excitations passing through eigenfrequency veering regions, and (b) a design's sensitivity to blade mistuning. Hence, the findings in this paper suggest that multistage analyses may be required when excitations are expected to fall in or near eigenfrequency veering regions or when the sensitivity to blade mistuning is to be accounted for Conversely, the observed sensitivity to disk flexibility also indicates that the severity of unfavorable structural interblade coupling may be reduced significantly by redesigning the disk(s) and stage-to-stage connectivity. The relatively drastic effects of such modifications illustrated in this work indicate that the design modifications required to alleviate veering-related response problems may be less comprehensive than what might have been expected.
Resumo:
A laboratory study of the rheology of mudflows in Hangzhou Bay, China, is reported in this paper. Both the steady and oscillatory (dynamic) rheological properties are studied using RMS-605 rheometer. A Dual-Bingham model is proposed for analyzing flow curves and compared with Worrall-Tuliani model. It is found that Dual-Bingham plastic rheological model is easier to implement than Worrall-Tuliani model and can provide satisfactory representations of the steady mudflows in Hangzhou Bay and other published data. The dependence of the yield stress and viscosity on sediment concentration is discussed based on the data from Hangzhou Bay mud and other published data. For the dynamic rheological properties of Hangzhou Bay mud, empirical expressions for elastic modulus and dynamic viscosity are provided in the form of exponential functions of sediment volume concentration, and comparisons with other published data also discussed.
Resumo:
In this article, graphical representations of DNA primary sequences were generated. Topological indices and molecular connectivity indices were calculated and used for the comparison of similarities among eight different DNA segments. The satisfactory results were achieved by this analysis.
Resumo:
Composite polymeric electrolytes of PEO-LiClO4-Al2O3 and PEO-LiClO4-EC were prepared and the ionic conductivity by a.c. impedance was calculated using four different methods, and three kinds of representations of a.c. impedance spectra were adopted. The first is based on the Nyquist impedance plot of the imaginary part (Z") versus the real part (Z') of the complex impedance. The second and the third correspond to the plots of imaginary impedance Z" as a function of frequency (f), and the absolute value (\Z\) and phase angle (theta) as a function of f, respectively. It was found that the values of the ionic conductivity calculated using the three representations of a.c. impedance spectra are basically identical.
Resumo:
In this paper, the analytical representations of four wave source functions in high-frequency spectrum range are given on the basis of ocean wave theory and dimensional analysis, and the perturbation method is used to solve the governing equations of ocean wave high-frequency spectrum on the basis of the temporally stationary and locally homogeneous scale relations of microscale wave. The microscale ocean wavenumber spectrum correct to the second order has an explicit structure, its first order part represents the equilibrium between different source functions, and its second order part represents the contribution of microscale wave propagation.
Resumo:
We explore representation of 3D objects in which several distinct 2D views are stored for each object. We demonstrate the ability of a two-layer network of thresholded summation units to support such representations. Using unsupervised Hebbian relaxation, we trained the network to recognise ten objects from different viewpoints. The training process led to the emergence of compact representations of the specific input views. When tested on novel views of the same objects, the network exhibited a substantial generalisation capability. In simulated psychophysical experiments, the network's behavior was qualitatively similar to that of human subjects.