979 resultados para Repertory grid technique
Resumo:
Background : Port-related bloodstream infection (PRBSI) is a common complication associated with long-term use of ports systems. Systemic antimicrobial therapy (ST) and removal of the device is the standard management of PRBSI. However, a conservative management combining ST with antibiotic lock therapy (ALT) without port removal has been suggested as an alternative management option for infections due to gram-positive skin colonizers with low virulence.¦Objectives : i) to assess the frequency of management of PRBSI in onco-hematological patients by combining the ALT with ST, without catheter removal and ii) to analyze the efficacy of such an approach.¦Methods : Retrospective observational study over a 6-year period between 2005 and 2010, including patients who where diagnosed with PRBSI and who were treated with ST and ALT. PRBSI diagnosis consisted in clinical signs of bacteremia with blood cultures positive for gram-positive skin colonizers. The primary endpoint was failure to cure the PRBSI.¦Results : 61 port infections were analysed, of which 23 PRBSI met the inclusion criteria. All the patients were suffering from haematological conditions and 75% were neutropenic at the time of PRBSI diagnosis. S. epidermidis was responsible for 91% of PRBSI (21/23). The median duration of ST was 14 days (range 7-35) and the median duration of ALT was 15 days (range 8-41). Failure to cure the PRBSI requiring port removal was observed in 4 patients, but was not associated with severe infectious complications. Kaplan-Meier analysis showed a success rate in port salvage at day 180 (6 months) of 78% (95%CI 59-97%).¦Conclusion : The success rate observed in the present study suggests that combining ST and ALT is an effective option to conservatively treat PRBSI caused by pathogens of low virulence such as S. epidermidis.
Resumo:
One of the important questions in biological evolution is to know if certain changes along protein coding genes have contributed to the adaptation of species. This problem is known to be biologically complex and computationally very expensive. It, therefore, requires efficient Grid or cluster solutions to overcome the computational challenge. We have developed a Grid-enabled tool (gcodeml) that relies on the PAML (codeml) package to help analyse large phylogenetic datasets on both Grids and computational clusters. Although we report on results for gcodeml, our approach is applicable and customisable to related problems in biology or other scientific domains.
Adenovirus-mediated gene transfer into selected liver segments using a vascular exclusion technique.
Resumo:
Adenovirus-mediated gene therapy is hampered by severe virus-related toxicity, especially to the liver. The aim of the present study was to test the ability of a vascular exclusion technique to achieve transgene expression within selected liver segments, thus minimizing both viral and transgene product toxicity to the liver. An E1-E3-deleted replication-deficient adenovirus expressing a green fluorescent protein (GFP) reporter gene was injected into the portal vein of BDIX rats, with simultaneous clamping of the portal vein tributaries to liver segments II, III, IV, V, and VIII. GFP expression and inflammatory infiltrate were measured in the different segments of the liver and compared with those of the livers of animals receiving the viral vector in the portal vein without clamping. The GFP expression was significantly higher in the selectively perfused segments of the liver as compared with the non-perfused segments (p < 0.0001) and with the livers of animals that received the vector in the portal vein without clamping (p < 0.0001). Accordingly, the inflammatory infiltrate was more intense in the selectively perfused liver segments as compared with all other groups (p < 0.0001). Fluorescence was absent in lungs and kidneys and minimal in spleen. The clinical usefulness of adenovirus-mediated gene transfer to the liver largely depends on the reduction of its liver toxicity. Clamping of selected portal vein branches during injection allows for delivery of genes of interest to targeted liver segments. Transgene expression confined to selected liver segments may be useful in the treatment of focal liver diseases, including metastases.
Resumo:
The interfacial micromotion is closely associated to the long-term success of cementless hip prostheses. Various techniques have been proposed to measure them, but only a few number of points over the stem surface can be measured simultaneously. In this paper, we propose a new technique based on micro-Computer Tomography (μCT) to measure locally the relative interfacial micromotions between the metallic stem and the surrounding femoral bone. Tantalum beads were stuck at the stem surface and spread at the endosteal surface. Relative micromotions between the stem and the endosteal bone surfaces were measured at different loading amplitudes. The estimated error was 10μm and the maximal micromotion was 60μm, in the loading direction, at 1400N. This pilot study provided a local measurement of the micromotions in the 3 direction and at 8 locations on the stem surface simultaneously. This technique could be easily extended to higher loads and a much larger number of points, covering the entire stem surface and providing a quasi-continuous distribution of the 3D interfacial micromotions around the stem. The new measurement method would be very useful to compare the induced micromotions of different stem designs and to optimize the primary stability of cementless total hip arthroplasty.
Resumo:
OBJECTIVE: Transthoracic echocardiography (TTE) has been used clinically to disobstruct venous drainage cannula and to optimise placement of venous cannulae in the vena cava but it has never been used to evaluate performance capabilities. Also, little progress has been made in venous cannula design in order to optimise venous return to the heart lung machine. We designed a self-expandable Smartcanula (SC) and analysed its performance capability using echocardiography. METHODS: An epicardial echocardiography probe was placed over the SC or control cannula (CTRL) and a Doppler image was obtained. Mean (V(m)) and maximum (V(max)) velocities, flow and diameter were obtained. Also, pressure drop (DeltaP(CPB)) was obtained between the central venous pressure and inlet to venous reservoir. LDH and Free Hb were also compared in 30 patients. Comparison was made between the two groups using the student's t-test with statistical significance established when p<0.05. RESULTS: Age for the SC and CC groups were 61.6+/-17.6 years and 64.6+/-13.1 years, respectively. Weight was 70.3+/-11.6 kg and 72.8+/-14.4 kg, respectively. BSA was 1.80+/-0.2 m(2) and 1.82+/-0.2 m(2), respectively. CPB times were 114+/-53 min and 108+/-44 min, respectively. Cross-clamp time was 59+/-15 min and 76+/-29 min, respectively (p=NS). Free-Hb was 568+/-142 U/l versus 549+/-271 U/l post-CPB for the SC and CC, respectively (p=NS). LDH was 335+/-73 mg/l versus 354+/-116 mg/l for the SC and CC, respectively (p=NS). V(m) was 89+/-10 cm/s (SC) versus 63+/-3 cm/s (CC), V(max) was 139+/-23 cm/s (SC) versus 93+/-11 cm/s (CC) (both p<0.01). DeltaP(CPB) was 30+/-10 mmHg (SC) versus 43+/-13 mmHg (CC) (p<0.05). A Bland-Altman test showed good agreement between the two devices used concerning flow rate calculations between CPB and TTE (bias 300 ml+/-700 ml standard deviation). CONCLUSIONS: This novel Smartcanula design, due to its self-expanding principle, provides superior flow characteristics compared to classic two stage venous cannula used for adult CPB surgery. No detrimental effects were observed concerning blood damage. Echocardiography was effective in analysing venous cannula performance and velocity patterns.
Resumo:
CSCL applications are complex distributed systems that posespecial requirements towards achieving success in educationalsettings. Flexible and efficient design of collaborative activitiesby educators is a key precondition in order to provide CSCL tailorable systems, capable of adapting to the needs of eachparticular learning environment. Furthermore, some parts ofthose CSCL systems should be reused as often as possible inorder to reduce development costs. In addition, it may be necessary to employ special hardware devices, computational resources that reside in other organizations, or even exceed thepossibilities of one specific organization. Therefore, theproposal of this paper is twofold: collecting collaborativelearning designs (scripting) provided by educators, based onwell-known best practices (collaborative learning flow patterns) in a standard way (IMS-LD) in order to guide the tailoring of CSCL systems by selecting and integrating reusable CSCL software units; and, implementing those units in the form of grid services offered by third party providers. More specifically, this paper outlines a grid-based CSCL system having these features and illustrates its potential scope and applicability by means of a sample collaborative learning scenario.
Resumo:
Myocardial tagging has shown to be a useful magnetic resonance modality for the assessment and quantification of local myocardial function. Many myocardial tagging techniques suffer from a rapid fading of the tags, restricting their application mainly to systolic phases of the cardiac cycle. However, left ventricular diastolic dysfunction has been increasingly appreciated as a major cause of heart failure. Subtraction based slice-following CSPAMM myocardial tagging has shown to overcome limitations such as fading of the tags. Remaining impediments to this technique, however, are extensive scanning times (approximately 10 min), the requirement of repeated breath-holds using a coached breathing pattern, and the enhanced sensitivity to artifacts related to poor patient compliance or inconsistent depths of end-expiratory breath-holds. We therefore propose a combination of slice-following CSPAMM myocardial tagging with a segmented EPI imaging sequence. Together with an optimized RF excitation scheme, this enables to acquire as many as 20 systolic and diastolic grid-tagged images per cardiac cycle with a high tagging contrast during a short period of sustained respiration.