901 resultados para Recommended Systems, Component Technolog, Customisation, Collaborative Filtering
Resumo:
The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation. Thus, the amino acid requirements estimated by model are animal- and time-dependent and follow, in real time, the individual DFI and BW growth patterns. The proposed model can follow the average feed intake and feed weight trajectory of each individual pig in real time with good accuracy. Based on these trajectories and using classical factorial equations, the model makes it possible to estimate dynamically the AA requirements of each animal, taking into account the intake and growth changes of the animal. © 2012 American Society of Animal Science. All rights reserved.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
This paper presents the operational analysis of the single-phase integrated buck-boost inverter. This topology is able to convert the DC input voltage into AC voltage with a high static gain, low harmonic content and acceptable efficiency, all in one single-stage. Main functionality aspects are explained, design procedure, system modeling and control, and also component requirements are detailed. Main simulation results are included, and two prototypes were implemented and experimentally tested, where its results are compared with those corresponding to similar topologies available in literature. © 2012 IEEE.
Resumo:
Non-pressure compensating drip hose is widely used for irrigation of vegetables and orchards. One limitation is that the lateral line length must be short to maintain uniformity due to head loss and slope. Any procedure to increase the length is appropriate because it represents low initial cost of the irrigation system. The hypothesis of this research is that it is possible to increase the lateral line length combining two points: using a larger spacing between emitters at the beginning of the lateral line and a smaller one after a certain distance; and allowing a higher pressure variation along the lateral line under an acceptable value of distribution uniformity. To evaluate this hypothesis, a nonlinear programming model (NLP) was developed. The input data are: diameter, roughness coefficient, pressure variation, emitter operational pressure, relationship between emitter discharge and pressure. The output data are: line length, discharge and length of the each section with different spacing between drippers, total discharge in the lateral line, multiple outlet adjustment coefficient, head losses, localized head loss, pressure variation, number of emitters, spacing between emitters, discharge in each emitter, and discharge per linear meter. The mathematical model developed was compared with the lateral line length obtained with the algebraic solution generated by the Darcy-Weisbach equation. The NLP model showed the best results since it generated the greater gain in the lateral line length, maintaining the uniformity and the flow variation under acceptable standards. It had also the lower flow variation, so its adoption is feasible and recommended.
Digital filtering of oscillations intrinsic to transmission line modeling based on lumped parameters
Resumo:
A correction procedure based on digital signal processing theory is proposed to smooth the numeric oscillations in electromagnetic transient simulation results from transmission line modeling based on an equivalent representation by lumped parameters. The proposed improvement to this well-known line representation is carried out with an Finite Impulse Response (FIR) digital filter used to exclude the high-frequency components associated with the spurious numeric oscillations. To prove the efficacy of this correction method, a well-established frequency-dependent line representation using state equations is modeled with an FIR filter included in the model. The results obtained from the state-space model with and without the FIR filtering are compared with the results simulated by a line model based on distributed parameters and inverse transforms. Finally, the line model integrated with the FIR filtering is also tested and validated based on simulations that include nonlinear and time-variable elements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Rationale and aim The aims of the Cochrane systematic reviews are to make readily available and up-to-date information for clinical practice, offering consistent evidence and straightforward recommendations. In 2004, we evaluated the conclusions from Cochrane systematic reviews of randomized controlled trials in terms of their recommendations for clinical practice and found that 47.83% of them had insufficient evidence for use in clinical practice. We proposed to reanalyze the reviews to evaluate whether this percentage had significantly decreased. Methods A cross-sectional study of systematic reviews published in the Cochrane Library (Issue 7, 2011) was conducted. We randomly selected reviews across all 52 Cochrane Collaborative Review Groups. Results We analyzed 1128 completed systematic reviews. Of these, 45.30% concluded that the interventions studied were likely to be beneficial, of which only 2.04% recommended no further research. In total, 45.04% of the reviews reported that the evidence did not support either benefit or harm, of which 0.8% did not recommend further studies and 44.24% recommended additional studies; the latter has decreased from our previous study with a difference of 3.59%. Conclusion Only a small number of the Cochrane collaboration's systematic reviews support clinical interventions with no need for additional research. A larger number of high-quality randomized clinical trials are necessary to change the 'insufficient evidence' scenario for clinical practice illustrated by the Cochrane database. It is recommended that we should produce higher-quality primary studies in active collaboration and consultation with global scholars and societies so that this can represent a major component of methodological advance in this context. © 2012 John Wiley & Sons Ltd.
Resumo:
Este trabalho apresenta o processo de desenvolvimento e implementação do Laboratório de Experimentação Remota em Tempo Real (LabExp), atualmente em funcionamento na Universidade Federal do Pará, com o objetivo de funcionar como uma plataforma auxiliar para ensino e aprendizagem das disciplinas de sistemas de controle. O ensino e aprendizagem foram contemplados através da disponibilização de experimentos, onde os usuários poderão interagir com os mesmos, alterando parâmetros e observando o resultado desta interação. Além dos experimentos disponíveis, acredita-se que em ambientes de educação online é interessante disponibilizar aos alunos ferramentas que proporcionem maior interação entre alunos e professores e com o próprio laboratório remoto, proporcionando uma metodologia de aprendizado mais colaborativo, estimulando o aluno. Desta forma, são disponibilizadas aos alunos três aplicações: uma para envio de seus próprios experimentos; outra para interação com outros alunos, através de um fórum; e outra para o envio de suas opiniões/críticas. Antes do processo de desenvolvimento e implementação do LabExp, foi realizada uma análise sucinta sobre educação online, tendo em vista ser esta a finalidade do laboratório. Esta análise proporcionou maior conhecimento sobre esta metodologia de educação, orientando no restante do desenvolvimento do LabExp. Compreende-se que as tecnologias utilizadas não são determinantes para o desenvolvimento de um laboratório remoto, voltado para a educação online, entretanto experimentos remotos de sistemas de controle possuem uma restrição temporal, ou seja, necessitam obedecer a limites de tempo restritos, funcionando em tempo real. Para conseguir este comportamento foi utilizada a Real-Time Application Interface (RTAI), com o componente RTAI-XML. Além das tecnologias utilizadas, neste trabalho também é apresentado o processo de modelagem do LabExp, de acordo com padrões, princípios e recursos da Unified Modeling Language (UML) aplicada a aplicações web. Este processo de modelagem foi de fundamental importância, pois facilitou e orientou o desenvolvimento do laboratório.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Maize demand for food, livestock feed, and biofuel is expected to increase substantially. The Western U.S. Corn Belt accounts for 23% of U.S. maize production, and irrigated maize accounts for 43 and 58% of maize land area and total production, respectively, in this region. The most sensitive parameters (yield potential [YP], water-limited yield potential [YP-W], yield gap between actual yield and YP, and resource-use efficiency) governing performance of maize systems in the region are lacking. A simulation model was used to quantify YP under irrigated and rainfed conditions based on weather data, soil properties, and crop management at 18 locations. In a separate study, 5-year soil water data measured in central Nebraska were used to analyze soil water recharge during the non-growing season because soil water content at sowing is a critical component of water supply available for summer crops. On-farm data, including yield, irrigation, and nitrogen (N) rate for 777 field-years, was used to quantify size of yield gaps and evaluate resource-use efficiency. Simulated average YP and YP-W were 14.4 and 8.3 Mg ha-1, respectively. Geospatial variation of YP was associated with solar radiation and temperature during post-anthesis phase while variation in water-limited yield was linked to the longitudinal variation in seasonal rainfall and evaporative demand. Analysis of soil water recharge indicates that 80% of variation in soil water content at sowing can be explained by precipitation during non-growing season and residual soil water at end of previous growing season. A linear relationship between YP-W and water supply (slope: 19.3 kg ha-1 mm-1; x-intercept: 100 mm) can be used as a benchmark to diagnose and improve farmer’s water productivity (WP; kg grain per unit of water supply). Evaluation of data from farmer’s fields provides proof-of-concept and helps identify management constraints to high levels of productivity and resource-use efficiency. On average, actual yields of irrigated maize systems were 11% below YP. WP and N-fertilizer use efficiency (NUE) were high despite application of large amounts of irrigation water and N fertilizer (14 kg grain mm-1 water supply and 71 kg grain kg-1 N fertilizer). While there is limited scope for substantial increases in actual average yields, WP and NUE can be further increased by: (1) switching surface to pivot systems, (2) using conservation instead of conventional tillage systems in soybean-maize rotations, (3) implementation of irrigation schedules based on crop water requirements, and (4) better N fertilizer management.
Resumo:
Over the past several decades, the topic of child development in a cultural context has received a great deal of theoretical and empirical investigation. Investigators from the fields of indigenous and cultural psychology have argued that childhood is socially and historically constructed, rather than a universal process with a standard sequence of developmental stages or descriptions. As a result, many psychologists have become doubtful that any stage theory of cognitive or socialemotional development can be found to be valid for all times and places. In placing more theoretical emphasis on contextual processes, they define culture as a complex system of common symbolic action patterns (or scripts) built up through everyday human social interaction by means of which individuals create common meanings and in terms of which they organize experience. Researchers understand culture to be organized and coherent, but not homogenous or static, and realize that the complex dynamic system of culture constantly undergoes transformation as participants (adults and children) negotiate and re-negotiate meanings through social interaction. These negotiations and transactions give rise to unceasing heterogeneity and variability in how different individuals and groups of individuals interpret values and meanings. However, while many psychologists—both inside and outside the fields of indigenous and cultural psychology–are now willing to give up the idea of a universal path of child development and a universal story of parenting, they have not necessarily foreclosed on the possibility of discovering and describing some universal processes that underlie socialization and development-in-context. The roots of such universalities would lie in the biological aspects of child development, in the evolutionary processes of adaptation, and in the unique symbolic and problem-solving capacities of the human organism as a culture-bearing species. For instance, according to functionalist psychological anthropologists, shared (cultural) processes surround the developing child and promote in the long view the survival of families and groups if they are to demonstrate continuity in the face of ecological change and resource competition, (e.g. Edwards & Whiting, 2004; Gallimore, Goldenberg, & Weisner, 1993; LeVine, Dixon, LeVine, Richman, Leiderman, Keefer, & Brazelton, 1994; LeVine, Miller, & West, 1988; Weisner, 1996, 2002; Whiting & Edwards, 1988; Whiting & Whiting, 1980). As LeVine and colleagues (1994) state: A population tends to share an environment, symbol systems for encoding it, and organizations and codes of conduct for adapting to it (emphasis added). It is through the enactment of these population-specific codes of conduct in locally organized practices that human adaptation occurs. Human adaptation, in other words, is largely attributable to the operation of specific social organizations (e.g. families, communities, empires) following culturally prescribed scripts (normative models) in subsistence, reproduction, and other domains [communication and social regulation]. (p. 12) It follows, then, that in seeking to understand child development in a cultural context, psychologists need to support collaborative and interdisciplinary developmental science that crosses international borders. Such research can advance cross-cultural psychology, cultural psychology, and indigenous psychology, understood as three sub-disciplines composed of scientists who frequently communicate and debate with one another and mutually inform one another’s research programs. For example, to turn to parental belief systems, the particular topic of this chapter, it is clear that collaborative international studies are needed to support the goal of crosscultural psychologists for findings that go beyond simply describing cultural differences in parental beliefs. Comparative researchers need to shed light on whether parental beliefs are (or are not) systematically related to differences in child outcomes; and they need meta-analyses and reviews to explore between- and within-culture variations in parental beliefs, with a focus on issues of social change (Saraswathi, 2000). Likewise, collaborative research programs can foster the goals of indigenous psychology and cultural psychology and lay out valid descriptions of individual development in their particular cultural contexts and the processes, principles, and critical concepts needed for defining, analyzing, and predicting outcomes of child development-in-context. The project described in this chapter is based on an approach that integrates elements of comparative methodology to serve the aim of describing particular scenarios of child development in unique contexts. The research team of cultural insiders and outsiders allows for a look at American belief systems based on a dialogue of multiple perspectives.