971 resultados para Reading and Interpretation of Statistical Graphs
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
Resource analysis aims at inferring the cost of executing programs for any possible input, in terms of a given resource, such as the traditional execution steps, time ormemory, and, more recently energy consumption or user defined resources (e.g., number of bits sent over a socket, number of database accesses, number of calls to particular procedures, etc.). This is performed statically, i.e., without actually running the programs. Resource usage information is useful for a variety of optimization and verification applications, as well as for guiding software design. For example, programmers can use such information to choose different algorithmic solutions to a problem; program transformation systems can use cost information to choose between alternative transformations; parallelizing compilers can use cost estimates for granularity control, which tries to balance the overheads of task creation and manipulation against the benefits of parallelization. In this thesis we have significatively improved an existing prototype implementation for resource usage analysis based on abstract interpretation, addressing a number of relevant challenges and overcoming many limitations it presented. The goal of that prototype was to show the viability of casting the resource analysis as an abstract domain, and howit could overcome important limitations of the state-of-the-art resource usage analysis tools. For this purpose, it was implemented as an abstract domain in the abstract interpretation framework of the CiaoPP system, PLAI.We have improved both the design and implementation of the prototype, for eventually allowing an evolution of the tool to the industrial application level. The abstract operations of such tool heavily depend on the setting up and finding closed-form solutions of recurrence relations representing the resource usage behavior of program components and the whole program as well. While there exist many tools, such as Computer Algebra Systems (CAS) and libraries able to find closed-form solutions for some types of recurrences, none of them alone is able to handle all the types of recurrences arising during program analysis. In addition, there are some types of recurrences that cannot be solved by any existing tool. This clearly constitutes a bottleneck for this kind of resource usage analysis. Thus, one of the major challenges we have addressed in this thesis is the design and development of a novel modular framework for solving recurrence relations, able to combine and take advantage of the results of existing solvers. Additionally, we have developed and integrated into our novel solver a technique for finding upper-bound closed-form solutions of a special class of recurrence relations that arise during the analysis of programs with accumulating parameters. Finally, we have integrated the improved resource analysis into the CiaoPP general framework for resource usage verification, and specialized the framework for verifying energy consumption specifications of embedded imperative programs in a real application, showing the usefulness and practicality of the resulting tool.---ABSTRACT---El Análisis de recursos tiene como objetivo inferir el coste de la ejecución de programas para cualquier entrada posible, en términos de algún recurso determinado, como pasos de ejecución, tiempo o memoria, y, más recientemente, el consumo de energía o recursos definidos por el usuario (por ejemplo, número de bits enviados a través de un socket, el número de accesos a una base de datos, cantidad de llamadas a determinados procedimientos, etc.). Ello se realiza estáticamente, es decir, sin necesidad de ejecutar los programas. La información sobre el uso de recursos resulta muy útil para una gran variedad de aplicaciones de optimización y verificación de programas, así como para asistir en el diseño de los mismos. Por ejemplo, los programadores pueden utilizar dicha información para elegir diferentes soluciones algorítmicas a un problema; los sistemas de transformación de programas pueden utilizar la información de coste para elegir entre transformaciones alternativas; los compiladores paralelizantes pueden utilizar las estimaciones de coste para realizar control de granularidad, el cual trata de equilibrar el coste debido a la creación y gestión de tareas, con los beneficios de la paralelización. En esta tesis hemos mejorado de manera significativa la implementación de un prototipo existente para el análisis del uso de recursos basado en interpretación abstracta, abordando diversos desafíos relevantes y superando numerosas limitaciones que éste presentaba. El objetivo de dicho prototipo era mostrar la viabilidad de definir el análisis de recursos como un dominio abstracto, y cómo se podían superar las limitaciones de otras herramientas similares que constituyen el estado del arte. Para ello, se implementó como un dominio abstracto en el marco de interpretación abstracta presente en el sistema CiaoPP, PLAI. Hemos mejorado tanto el diseño como la implementación del mencionado prototipo para posibilitar su evolución hacia una herramienta utilizable en el ámbito industrial. Las operaciones abstractas de dicha herramienta dependen en gran medida de la generación, y posterior búsqueda de soluciones en forma cerrada, de relaciones recurrentes, las cuales modelizan el comportamiento, respecto al consumo de recursos, de los componentes del programa y del programa completo. Si bien existen actualmente muchas herramientas capaces de encontrar soluciones en forma cerrada para ciertos tipos de recurrencias, tales como Sistemas de Computación Algebraicos (CAS) y librerías de programación, ninguna de dichas herramientas es capaz de tratar, por sí sola, todos los tipos de recurrencias que surgen durante el análisis de recursos. Existen incluso recurrencias que no las puede resolver ninguna herramienta actual. Esto constituye claramente un cuello de botella para este tipo de análisis del uso de recursos. Por lo tanto, uno de los principales desafíos que hemos abordado en esta tesis es el diseño y desarrollo de un novedoso marco modular para la resolución de relaciones recurrentes, combinando y aprovechando los resultados de resolutores existentes. Además de ello, hemos desarrollado e integrado en nuestro nuevo resolutor una técnica para la obtención de cotas superiores en forma cerrada de una clase característica de relaciones recurrentes que surgen durante el análisis de programas lógicos con parámetros de acumulación. Finalmente, hemos integrado el nuevo análisis de recursos con el marco general para verificación de recursos de CiaoPP, y hemos instanciado dicho marco para la verificación de especificaciones sobre el consumo de energía de programas imperativas embarcados, mostrando la viabilidad y utilidad de la herramienta resultante en una aplicación real.
Resumo:
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper
Resumo:
This paper decomposes the conventional measure of selection bias in observational studies into three components. The first two components are due to differences in the distributions of characteristics between participant and nonparticipant (comparison) group members: the first arises from differences in the supports, and the second from differences in densities over the region of common support. The third component arises from selection bias precisely defined. Using data from a recent social experiment, we find that the component due to selection bias, precisely defined, is smaller than the first two components. However, selection bias still represents a substantial fraction of the experimental impact estimate. The empirical performance of matching methods of program evaluation is also examined. We find that matching based on the propensity score eliminates some but not all of the measured selection bias, with the remaining bias still a substantial fraction of the estimated impact. We find that the support of the distribution of propensity scores for the comparison group is typically only a small portion of the support for the participant group. For values outside the common support, it is impossible to reliably estimate the effect of program participation using matching methods. If the impact of participation depends on the propensity score, as we find in our data, the failure of the common support condition severely limits matching compared with random assignment as an evaluation estimator.
Resumo:
Acknowledgements. This work is dedicated to the memory of Andrés Pérez-Estaún, brilliant scientist, colleague, and friend. The authors sincerely thank Ian Ferguson and an anonymous reviewer for their useful comments on the manuscript. Xènia Ogaya is currently supported in the Dublin Institute for Advanced Studies by a Science Foundation Ireland grant IRECCSEM (SFI grant 12/IP/1313). Juan Alcalde is funded by NERC grant NE/M007251/1, on interpretational uncertainty. Juanjo Ledo, Pilar Queralt and Alex Marcuello thank Ministerio de Economía y Competitividad and EU Feder Funds through grant CGL2014- 54118-C2-1-R. Funding for this Project has been partially provided by the Spanish Ministry of Industry, Tourism and Trade, through the CIUDEN-CSIC-Inst. Jaume Almera agreement (ALM-09-027: Characterization, Development and Validation of Seismic Techniques applied to CO2 Geological Storage Sites), the CIUDEN-Fundació Bosch i Gimpera agreement (ALM-09-009 Development and Adaptation of Electromagnetic techniques: Characterisation of Storage Sites) and the project PIERCO2 (Progress In Electromagnetic Research for CO2 geological reservoirs CGL2009-07604). The CIUDEN project is co-financed by the European Union through the Technological Development Plant of Compostilla OXYCFB300 Project (European Energy Programme for Recovery).
Resumo:
Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.
Resumo:
This paper reports on the further results of the ongoing research analyzing the impact of a range of commonly used statistical and semantic features in the context of extractive text summarization. The features experimented with include word frequency, inverse sentence and term frequencies, stopwords filtering, word senses, resolved anaphora and textual entailment. The obtained results demonstrate the relative importance of each feature and the limitations of the tools available. It has been shown that the inverse sentence frequency combined with the term frequency yields almost the same results as the latter combined with stopwords filtering that in its turn proved to be a highly competitive baseline. To improve the suboptimal results of anaphora resolution, the system was extended with the second anaphora resolution module. The present paper also describes the first attempts of the internal document data representation.
Resumo:
Statistical machine translation (SMT) is an approach to Machine Translation (MT) that uses statistical models whose parameter estimation is based on the analysis of existing human translations (contained in bilingual corpora). From a translation student’s standpoint, this dissertation aims to explain how a phrase-based SMT system works, to determine the role of the statistical models it uses in the translation process and to assess the quality of the translations provided that system is trained with in-domain goodquality corpora. To that end, a phrase-based SMT system based on Moses has been trained and subsequently used for the English to Spanish translation of two texts related in topic to the training data. Finally, the quality of this output texts produced by the system has been assessed through a quantitative evaluation carried out with three different automatic evaluation measures and a qualitative evaluation based on the Multidimensional Quality Metrics (MQM).