983 resultados para Razón real (ratio rei)
Resumo:
This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.
Resumo:
Common method variance (CMV) has received little attention within the field of road safety research despite a heavy reliance on self-report data. Two surveys were completed by 214 motorists over a two-month period, allowing associations between social desirability and key road safety variables and relationships between scales across the two survey waves to be examined. Social desirability was found to have a strong negative correlation with the Driver Behaviour Questionnaire (DBQ) sub-scales as well as age, but not with crashes and offences. Drivers who scored higher on the social desirability scale were also less likely to report aberrant driving behaviours as measured by the DBQ. Controlling for social desirability did not substantially alter the predictive relationship between the DBQ and the crash and offences variables. The strength of the correlations within and between the two waves were also compared with the results strongly suggesting that effects associated with CMV were present. Identification of CMV would be enhanced by the replication of this study with a larger sample size and comparing self-report data with official sources.
Resumo:
This paper addresses the topic of real-time decision making by autonomous city vehicles. Beginning with an overview of the state of research, the paper presents the vehicle decision making & control systemarchitecture, explains the subcomponents which are relevant for decision making (World Model and Driving Maneuver subsystem), and presents the decision making process. Experimental test results confirmthe suitability of the developed approach to deal with the complex real-world urban traffic.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
Resumo:
Polymorphisms of glutathione transferases (GST) are important genetic determinants of susceptibility to environmental carcinogens (Rebbeck, 1997). The GSTs are a multigene family of dimeric enzymes involved in detoxification, and, in a few cases, the bioactivation of a variety of xenobiotics (Hayes et al., 1995). The cytosolic GST enzyme family consists of four major classes of enzymes, referred to as alpha, mu, pi and theta. Several members of this family (for example, GSTM1, GSTT1 and GSTP1) are polymorphic in human populations (Wormhoudt et al., 1999). Molecular epidemiology studies have examined the role of GST polymorphisms as susceptibility factors for environmentally and/or occupationally induced cancers (Wormhoudt et al., 1999). In particular, case-control studies showed a relationship between the GSTM1 null genotype and the development of cancer in association with smoking habits, which has been shown for cancers of the respiratory and gastrointestinal tracts as well as other cancer types (Miller et al., 1997). Only a few molecular epidemiological studies addressed the role of GSTT1 and GSTP1 polymorphisms in cancer susceptibility. Since GSTP1 is a key player in biotransformation/bioactivation of benzo(a)pyrene, GSTP1 may be even more important than GSTM1 in the prevention of tobacco-induced cancers (Harries et al., 1997; Harris et al., 1998). To date, this relationship has not been sufficiently addressed in humans. Comprehensive molecular epidemiological studies may add to the current knowledge of the role of GST polymorphisms in cancer susceptibility and extent of the knowledge gained from approaches that used phenotyping, such as GSTM1 activity as it relates to trans-stilbene oxide, or polymerase chain reaction (PCR) based genotyping of polymorphic isoenzymes (Bell et al., 1993; Pemble et al., 1994; Harries et al., 1997).
Resumo:
Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.
Resumo:
BACKGROUND: The use of salivary diagnostics is increasing because of its noninvasiveness, ease of sampling, and the relatively low risk of contracting infectious organisms. Saliva has been used as a biological fluid to identify and validate RNA targets in head and neck cancer patients. The goal of this study was to develop a robust, easy, and cost-effective method for isolating high yields of total RNA from saliva for downstream expression studies. METHODS: Oral whole saliva (200 mu L) was collected from healthy controls (n = 6) and from patients with head and neck cancer (n = 8). The method developed in-house used QIAzol lysis reagent (Qiagen) to extract RNA from saliva (both cell-free supernatants and cell pellets), followed by isopropyl alcohol precipitation, cDNA synthesis, and real-time PCR analyses for the genes encoding beta-actin ("housekeeping" gene) and histatin (a salivary gland-specific gene). RESULTS: The in-house QIAzol lysis reagent produced a high yield of total RNA (0.89 -7.1 mu g) from saliva (cell-free saliva and cell pellet) after DNase treatment. The ratio of the absorbance measured at 260 nm to that at 280 nm ranged from 1.6 to 1.9. The commercial kit produced a 10-fold lower RNA yield. Using our method with the QIAzol lysis reagent, we were also able to isolate RNA from archived saliva samples that had been stored without RNase inhibitors at -80 degrees C for >2 years. CONCLUSIONS: Our in-house QIAzol method is robust, is simple, provides RNA at high yields, and can be implemented to allow saliva transcriptomic studies to be translated into a clinical setting.
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).
Resumo:
This paper proposes a physically motivated reappraisal of manoeuvring models for ships and presents a new model developed from first principles by application of low aspect-ratio aerodynamic theory and Lagrangian mechanics. The coefficients of the model are shown to be related to physical processes, and validation is presented using the results from a planar motion mechanism dataset.
Resumo:
Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.
Resumo:
With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.
Resumo:
The ambiguity acceptance test is an important quality control procedure in high precision GNSS data processing. Although the ambiguity acceptance test methods have been extensively investigated, its threshold determine method is still not well understood. Currently, the threshold is determined with the empirical approach or the fixed failure rate (FF-) approach. The empirical approach is simple but lacking in theoretical basis, while the FF-approach is theoretical rigorous but computationally demanding. Hence, the key of the threshold determination problem is how to efficiently determine the threshold in a reasonable way. In this study, a new threshold determination method named threshold function method is proposed to reduce the complexity of the FF-approach. The threshold function method simplifies the FF-approach by a modeling procedure and an approximation procedure. The modeling procedure uses a rational function model to describe the relationship between the FF-difference test threshold and the integer least-squares (ILS) success rate. The approximation procedure replaces the ILS success rate with the easy-to-calculate integer bootstrapping (IB) success rate. Corresponding modeling error and approximation error are analysed with simulation data to avoid nuisance biases and unrealistic stochastic model impact. The results indicate the proposed method can greatly simplify the FF-approach without introducing significant modeling error. The threshold function method makes the fixed failure rate threshold determination method feasible for real-time applications.