931 resultados para Rate-equation models
Resumo:
A discrete agent-based model on a periodic lattice of arbitrary dimension is considered. Agents move to nearest-neighbor sites by a motility mechanism accounting for general interactions, which may include volume exclusion. The partial differential equation describing the average occupancy of the agent population is derived systematically. A diffusion equation arises for all types of interactions and is nonlinear except for the simplest interactions. In addition, multiple species of interacting subpopulations give rise to an advection-diffusion equation for each subpopulation. This work extends and generalizes previous specific results, providing a construction method for determining the transport coefficients in terms of a single conditional transition probability, which depends on the occupancy of sites in an influence region. These coefficients characterize the diffusion of agents in a crowded environment in biological and physical processes.
Resumo:
Introduction Risk factor analyses for nosocomial infections (NIs) are complex. First, due to competing events for NI, the association between risk factors of NI as measured using hazard rates may not coincide with the association using cumulative probability (risk). Second, patients from the same intensive care unit (ICU) who share the same environmental exposure are likely to be more similar with regard to risk factors predisposing to a NI than patients from different ICUs. We aimed to develop an analytical approach to account for both features and to use it to evaluate associations between patient- and ICU-level characteristics with both rates of NI and competing risks and with the cumulative probability of infection. Methods We considered a multicenter database of 159 intensive care units containing 109,216 admissions (813,739 admission-days) from the Spanish HELICS-ENVIN ICU network. We analyzed the data using two models: an etiologic model (rate based) and a predictive model (risk based). In both models, random effects (shared frailties) were introduced to assess heterogeneity. Death and discharge without NI are treated as competing events for NI. Results There was a large heterogeneity across ICUs in NI hazard rates, which remained after accounting for multilevel risk factors, meaning that there are remaining unobserved ICU-specific factors that influence NI occurrence. Heterogeneity across ICUs in terms of cumulative probability of NI was even more pronounced. Several risk factors had markedly different associations in the rate-based and risk-based models. For some, the associations differed in magnitude. For example, high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were associated with modest increases in the rate of nosocomial bacteremia, but large increases in the risk. Others differed in sign, for example respiratory vs cardiovascular diagnostic categories were associated with a reduced rate of nosocomial bacteremia, but an increased risk. Conclusions A combination of competing risks and multilevel models is required to understand direct and indirect risk factors for NI and distinguish patient-level from ICU-level factors.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.
Resumo:
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. © 2010 Elsevier Ltd.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
Resumo:
Objectives The primary objective of this research was to investigate wound management nurse practitioner (WMNP) models of service for the purposes of identifying parameters of practice and how patient outcomes are measured. Methods A scoping study was conducted with all authorised WMNPs in Australia from October to December 2012 using survey methodology. A questionnaire was developed to obtain data on the role and practice parameters of authorised WMNPs in Australia. The tool comprised seven sections and included a total of 59 questions. The questionnaire was distributed to all members of the WMNP Online Peer Review Group, to which it was anticipated the majority of WMNPs belonged. Results Twenty-one WMNPs responded (response rate 87%), with the results based on a subset of respondents who stated that, at the time of the questionnaire, they were employed as a WMNP, therefore yielding a response rate of 71% (n≤15). Most respondents (93%; n≤14) were employed in the public sector, with an average of 64 occasions of service per month. The typical length of a new case consultation was 60min, with 32min for follow ups. The most frequently performed activity was wound photography (83%; n≤12), patient, family or carer education (75%; n≤12), Doppler ankle-brachial pressure index assessment (58%; n≤12), conservative sharp wound debridement (58%; n≤12) and counselling (50%; n≤12). The most routinely prescribed medications were local anaesthetics (25%; n≤12) and oral antibiotics (25%; n≤12). Data were routinely collected by 91% of respondents on service-related and wound-related parameters to monitor patient outcomes, to justify and improve health services provided. Conclusion This study yielded important baseline information on this professional group, including data on patient problems managed, the types of interventions implemented, the resources used to accomplish outcomes and how outcomes are measured.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.
Resumo:
Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.
Resumo:
Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.
Resumo:
Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.
Resumo:
Objective: To compare measurements of sleeping metabolic rate (SMR) in infancy with predicted basal metabolic rate (BMR) estimated by the equations of Schofield. Methods: Some 104 serial measurements of SMR by indirect calorimetry were performed in 43 healthy infants at 1.5, 3, 6, 9 and 12 months of age. Predicted BMR was calculated using the weight only (BMR-wo) and weight and height (BMR-wh) equations of Schofield for 0-3-y-olds. Measured SMR values were compared with both predictive values by means of the Bland-Altman statistical test. Results: The mean measured SMR was 1.48 MJ/day. The mean predicted BMR values were 1.66 and 1.47 MJ/day for the weight only and weight and height equations, respectively. The Bland-Altman analysis showed that BMR-wo equation on average overestimated SMR by 0.18 MJ/day (11%) and the BMR-wh equation underestimated SMR by 0.01 MJ/day (1%). However the 95% limits of agreement were wide: -0.64 to + 0.28 MJ/day (28%) for the former equation and -0.39 to + 0.41 MJ/day (27%) for the latter equation. Moreover there was a significant correlation between the mean of the measured and predicted metabolic rate and the difference between them. Conclusions: The wide variation seen in the difference between measured and predicted metabolic rate and the bias probably with age indicates there is a need to measure actual metabolic rate for individual clinical care in this age group.
Resumo:
The dissipation rate of turbulent kinetic energy (epsilon) is a key parameter for mixing in surface aerators. In particular, determination epsilon across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix (R) calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.