428 resultados para Rab5 Effectors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’insuffisance cardiaque (IC) est associée à un taux de mortalité et d’hospitalisations élevé causant un fardeau économique important. Les deux causes majeures de décès de l’IC sont les arythmies ventriculaires létales et les sidérations myocardiques. Il est maintenant reconnu que l’angiotensine II (ANGII) est l'un des principaux médiateurs de l’IC. Ses effets délétères découlent de l’activation du récepteur de type 1 de l’ANGII (AT1) et entraînent le développement d’hypertrophie. Toutefois, son rôle dans la genèse d’arythmies demeure incompris. De ce fait, l'étude des mécanismes électriques et contractiles sous-jacents aux effets pathologiques de l’ANGII s’avère essentielle afin de mieux comprendre et soigner cette pathologie. Il est souvent perçu que les femmes sont protégées envers les maladies cardiovasculaires. Cependant, le nombre total de femmes décédant d’IC est plus grand que le nombre d’hommes. Également, l’impact des facteurs de risque diffère entre chaque sexe. Ces différences existent, mais les mécanismes sous-jacents sont encore peu connus. De plus, les femmes reçoivent fréquemment un diagnostic ou un traitement inapproprié en raison d’un manque d’information sur les différences entre les sexes dans la manifestation d’une pathologie. Ce manque de données peut découler du fait que les sujets de sexe féminin sont souvent sous-représentés dans les essais cliniques ou la recherche fondamentale ce qui a grandement limité l’avancement de nos connaissances sur ~50 % de la population. Ainsi, il semble plus que nécessaire d’approfondir notre compréhension des différences entre les sexes, notamment dans la progression de l’IC. L’utilisation d’un modèle de souris transgénique surexprimant le récepteur AT1 (souris AT1R) a permis d’étudier les changements électriques, structurels et contractiles avant et après le développement d’hypertrophie. Premièrement, chez les souris AT1R mâles, un ralentissement de la conduction ventriculaire a été observé indépendamment de l’hypertrophie. Ce résultat était expliqué par une réduction de la densité du courant Na+, mais pas de l’expression du canal. Ensuite, le rôle des protéines kinases C (PKC) dans la régulation du canal Na+ par l’ANGII a été exploré. Les évidences ont suggéré que la PKCα était responsable de la modulation de la diminution du courant Na+ chez les souris AT1R mâles et dans les cardiomyocytes humains dérivés de cellules souches induites pluripotentes (hiPSC-CM) en réponse à un traitement chronique à l’ANGII. Ensuite, les différences entre les sexes ont été comparées chez la souris AT1R. Une plus grande mortalité a été constatée chez les femelles AT1R suggérant qu’elles sont plus sensibles à la surexpression de AT1R. Le remodelage électrique ventriculaire a donc été comparé entre les souris AT1R des deux sexes. Les courants ioniques étaient altérés de façon similaire entre les sexes excluant ainsi leur implication dans la mortalité plus élevée chez les femelles. Ensuite, l’homéostasie calcique et la fonction cardiaque ont été étudiées. Il a été démontré que les femelles développaient une hypertrophie et une dilatation ventriculaire plus sévère que les mâles. De plus, les femelles AT1R avaient de petits transitoires calciques, une extrusion du Ca2+ plus lente ainsi qu’une augmentation de la fréquence des étincelles Ca2+ pouvant participer à des troubles contractiles et à la venue de post-dépolarisations précoces. En conclusion, l’ANGII est impliquée dans le remodelage électrique, structurel et calcique associé à l'émergence de l’IC. De surcroît, ces altérations affectent plus sévèrement les femelles soulignant la présence de différences entre les sexes dans le développement de l’IC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statins are a class of drug that inhibits cholesterol biosynthesis, and are used to treat patients with high serum cholesterol levels. They exert this function by competitively binding to the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA reductase (HMGR), which catalyses the formation of mevalonate, a rate-limiting step in cholesterol biosynthesis. In addition, statins have what are called “pleiotropic effects”, which include the reduction of inflammation, immunomodulation, and antimicrobial effects. Statins can also improve survival of patients with sepsis and pneumonia. Cystic fibrosis (CF) is the most common recessive inherited disease in the Caucasian population, which is characterised by factors including, but not limited to, excessive lung inflammation and increased susceptibility to infection. Therefore, the overall objective of this study was to examine the effects of statins on CFassociated bacterial pathogens and the host response. In this work, the prevalence of HMGR was examined in respiratory pathogens, and several CF-associated pathogens were found to possess homologues of this enzyme. HMGR homology was analysed in Staphylococcus aureus, Burkholderia cenocepacia and Streptococcus pneumoniae, and the HMGR of B. cenocepacia was found to have significant conservation to that of Pseudomonas mevalonii, which is the most widely-characterised bacterial HMGR. However, in silico analysis revealed that, unlike S. aureus and S. pneumoniae, B. cenocepacia did not possess homologues of other mevalonate pathway proteins, and that the HMGR of B. cenocepacia appeared to be involved in an alternative metabolic pathway. The effect of simvastatin was subsequently tested on the growth and virulence of S. aureus, B. cenocepacia and S. pneumoniae. Simvastatin inhibited the growth of all 3 species in a dose-dependent manner. In addition, statin treatment also attenuated biofilm formation of all 3 species, and reduced in vitro motility of S. aureus. Interestingly, simvastatin also increased the potency of the aminoglycoside antibiotic gentamicin against B. cenocepacia. The impact of statins was subsequently tested on the predominant CF-associated pathogen Pseudomonas aeruginosa, which does not possess a HMGR homologue. Mevastatin, lovastatin and simvastatin did not influence the growth of this species. However, sub-inhibitory statin concentrations reduced the swarming motility and biofilm formation of P. aeruginosa. The influence of statins was also examined on Type 3 toxin secretion, quorum sensing and chemotaxis, and no statin effect was observed on any of these phenotypes. Statins did not appear to have a characteristic effect on the P. aeruginosa transcriptome. However, a mutant library screen revealed that the effect of statins on P. aeruginosa biofilm was mediated through the PvrR regulator and the Cup fimbrial biosynthesis genes. Furthermore, proteomic analysis demonstrated that 6 proteins were reproducibly induced by simvastatin in the P. aeruginosa swarming cells. The effect of statins on the regulation of the host-P. aeruginosa immune response was also investigated. Statin treatment increased expression of the pro-inflammatory cytokines IL-8 and CCL20 in lung epithelial cells, but did not attenuate P. aeruginosa-mediated inflammatory gene induction. In fact, simvastatin and P. aeruginosa caused a synergistic effect on CCL20 expression. The expression of the transcriptional regulators KLF2 and KLF6 was also increased by statins and P. aeruginosa, with the induction of KLF6 by simvastatin proving to be a novel effect. Interestingly, both statins and P. aeruginosa were capable of inducing alternative splicing of KLF6. P. aeruginosa was found to induce KLF6 alternative splicing by way of the type 3 secreted toxin ExoS. In addition, a mechanistic role was elucidated for KLF6 in the lung, as it was determined that statin-mediated induction of this protein was responsible for the induction of the host response genes CCL20 and iNOS. Moreover, statin treatment caused a slight increase in infection-related cytotoxicity, and increased bacterial adhesion to cells. Taken together, these data demonstrate that statins can reduce the virulence of CFassociated bacterial pathogens and alter host response effectors. Furthermore, novel statin effectors were identified in both bacterial and host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is an extremely rare but highly aggressive form of breast cancer characterized by the rapid development of therapeutic resistance leading to particularly poor survival. Our previous work focused on the elucidation of factors that mediate therapeutic resistance in IBC and identified increased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), to correlate with the development of resistance to chemotherapeutics. Although XIAP is classically thought of as an inhibitor of caspase activation, multiple studies have revealed that XIAP can also function as a signaling intermediate in numerous pathways. Based on preliminary evidence revealing high expression of XIAP in pre-treatment IBC cells rather than only subsequent to the development of resistance, we hypothesized that XIAP could play an important signaling role in IBC pathobiology outside of its heavily published apoptotic inhibition function. Further, based on our discovery of inhibition of chemotherapeutic efficacy, we postulated that XIAP overexpression might also play a role in resistance to other forms of therapy, such as immunotherapy. Finally, we posited that targeting of specific redox adaptive mechanisms, which are observed to be a significant barrier to successful treatment of IBC, could overcome therapeutic resistance and enhance the efficacy of chemo-, radio-, and immuno- therapies. To address these hypotheses our objectives were: 1. to determine a role for XIAP in IBC pathobiology and to elucidate the upstream regulators and downstream effectors of XIAP; 2. to evaluate and describe a role for XIAP in the inhibition of immunotherapy; and 3. to develop and characterize novel redox modulatory strategies that target identified mechanisms to prevent or reverse therapeutic resistance.

Using various genomic and proteomic approaches, combined with analysis of cellular viability, proliferation, and growth parameters both in vitro and in vivo, we demonstrate that XIAP plays a central role in both IBC pathobiology in a manner mostly independent of its role as a caspase-binding protein. Modulation of XIAP expression in cells derived from patients prior to any therapeutic intervention significantly altered key aspects IBC biology including, but not limited to: IBC-specific gene signatures; the tumorigenic capacity of tumor cells; and the metastatic phenotype of IBC, all of which are revealed to functionally hinge on XIAP-mediated NFκB activation, a robust molecular determinant of IBC. Identification of the mechanism of XIAP-mediated NFκB activation led to the characterization of novel peptide-based antagonist which was further used to identify that increased NFκB activation was responsible for redox adaptation previously observed in therapy-resistant IBC cells. Lastly, we describe the targeting of this XIAP-NFκB-ROS axis using a novel redox modulatory strategy both in vitro and in vivo. Together, the data presented here characterize a novel and crucial role for XIAP both in therapeutic resistance and the pathobiology of IBC; these results confirm our previous work in acquired therapeutic resistance and establish the feasibility of targeting XIAP-NFκB and the redox adaptive phenotype of IBC as a means to enhance survival of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bud formation by Saccharomyces cerevisiae is a fundamental process for yeast proliferation. Bud emergence is initiated by the polarization of the cytoskeleton, leading to local secretory vesicle delivery and gulcan synthase activity. The master regulator of polarity establishment is a small Rho-family GTPase – Cdc42. Cdc42 forms a clustered patch at the incipient budding site in late G1 and mediates downstream events which lead to bud emergence. Cdc42 promotes morphogenesis via its various effectors. PAKs (p21-activated kinases) are important Cdc42 effectors which mediate actin cytoskeleton polarization and septin filament assembly. The PAKs Cla4 and Ste20 share common binding domains for GTP-Cdc42 and they are partially redundant in function. However, we found that Cla4 and Ste20 behaved differently during the polarization and this depended on their different membrane interaction domains. Also, Cla4 and Ste20 compete for a limited number of binding sites at the polarity patch during bud emergence. These results suggest that PAKs may be differentially regulated during polarity establishment.

Morphogenesis of yeast must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site prior to bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a “bud sensor”. Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed, and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct secretion systems which deliver molecules from one cell to another have huge significance in shaping bacterial communities or in determining the outcome of bacterial associations with eukaryotic organisms. This work examines the roles of the Type III Secretion System (T3SS) and the Type VI Secretion System (T6SS) systems of Pseudomonas, a widespread genus including clinical pathogens and biocontrol strains. Bioinformatic analysis of T6SS phylogeny and associated gene content within Pseudomonas identified several T6SS phylogenetic groups, and linked T6SS components VgrG and Hcp encoded outside of T6SS gene loci with their cognate T6SS phylogenetic groups. Remarkably, such “orphan” vgrG and hcp genes were found to occur in diverse, horizontally transferred, operons often containing putative T6SS accessory components and effectors. The prevalence of a widespread superfamily of T6SS lipase effectors (Tle) was assessed in metagenomes from various environments. The abundance of the Tle superfamily and individual families varied between niches, suggesting there is niche specific selection and specialisation of Tle. Experimental work also discovered that P. fluorescens F113 uses the SPI-1 T3SS to avoid amoeboid grazing in mixed populations. This finding may represent a significant aspect of F113 rhizocompetence, and the rhizocompetence of other Rhizobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The second messenger c-di-GMP is implicated in regulation of various aspects of the lifestyles and virulence of Gram-negative bacteria. Cyclic di-GMP is formed by diguanylate cyclases with a GGDEF domain and degraded by phosphodiesterases with either an EAL or HD-GYP domain. Proteins with tandem GGDEF-EAL domains occur in many bacteria, where they may be involved in c-di-GMP turnover or act as enzymatically-inactive c-di-GMP effectors. Here, we report a systematic study of the regulatory action of the eleven GGDEF-EAL proteins in Xanthomonas oryzae pv. oryzicola, an important rice pathogen causing bacterial leaf streak. Mutational analysis revealed that XOC_2335 and XOC_2393 positively regulate bacterial swimming motility, while XOC_2102, XOC_2393 and XOC_4190 negatively control sliding motility. The ΔXOC_2335/XOC_2393 mutant that had a higher intracellular c-di-GMP level than the wild type and the ΔXOC_4190 mutant exhibited reduced virulence to rice after pressure inoculation. In vitro purified XOC_4190 and XOC_2102 have little or no diguanylate cyclase or phosphodiesterase activity, which is consistent with unaltered c-di-GMP concentration in ΔXOC_4190. Nevertheless, both proteins can bind to c-di-GMP with high affinity, indicating a potential role as c-di-GMP effectors. Overall our findings advance understanding of c-di-GMP signaling and its links to virulence in an important rice pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two distinct phosphoenolpyruvate carboxylase (PEPC) isozymes occur in vascular plants and green algae: plant-type PEPC (PTPC) and bacterial-type PEPC (BTPC). PTPC polypeptides typically form a tightly regulated cytosolic Class-1 PEPC homotetramer. BTPCs, however, appear to be less widely expressed and to exist only as catalytic and regulatory subunits that physically interact with co-expressed PTPC subunits to form hetero-octameric Class-2 PEPC complexes that are highly desensitized to Class-1 PEPC allosteric effectors. Yeast two-hybrid studies indicated that castor plant BTPC (RcPPC4) interacts with all three Arabidopsis thaliana PTPC isozymes, and that it forms stronger interactions with AtPPC2 and AtPPC3, suggesting that specific PTPCs are preferred for Class-2 PEPC formation. In contrast, Arabidopsis BTPC (AtPPC4) appeared to interact very weakly with AtPPC2 and AtPPC3, suggesting that BTPCs from different species may have different physical properties, hypothesized to be due to sequence dissimilarities within their ~10 kDa intrinsically disordered region. Recent RNA-seq and microarray data were analyzed to obtain a better understanding of BTPC expression patterns in different tissues of various monocot and dicot species. High levels of BTPC transcripts, polypeptides and Class-2 PEPC complexes were originally discovered in developing castor seeds, but the analysis revealed a broad range of diverse tissues where abundant BTPC transcripts are also expressed, such as the developing fruits of cucumber, grape, and tomato. Marked BTPC expression correlated well with the presence of ~116 kDa immunoreactive BTPC polypeptides, as well as Class-2 PEPC complexes in the immature fruit of cucumbers and tomatoes. It is therefore hypothesized that in vascular plants BTPC and thus Class-2 PEPC complexes maintain anaplerotic PEP flux in tissues with elevated malate levels that would potently inhibit ‘housekeeping’ Class-1 PEPCs. Elevated levels of malate can be used by biosynthetically active sink tissues such as immature tomatoes and cucumbers for rapid cell expansion, drought or salt stressed roots for osmoregulation, and developing seeds and pollen as a precursor for storage lipid and protein biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intestinal tract of schistosomes opens at the mouth and leads into the foregut or oesophageal region that is lined with syncytium continuous with the apical cytoplasm of the tegument. The oesophagus is surrounded by a specialised gland, the oesophageal gland. This gland releases materials into the lumen of the oesophagus and the region is thought to initiate the lysis of erythrocytes and neutralisation of immune effectors of the host. The oesophageal region is present in the early invasive schistosomulum, a stage potentially targetable by anti-schistosome vaccines. We used a 44k oligonucleotide microarray to identify highly up-regulated genes in microdissected frozen sections of the oesophageal gland of male worms of S. mansoni. We show that 122 genes were up-regulated 2-fold or higher in the oesophageal gland compared with a whole male worm tissue control. The enriched genes included several associated with lipid metabolism and transmembrane transport as well as some micro-exon genes. Since the oesophageal gland is important in the initiation of digestion and the fact that it develops early after invasion of the mammalian host, further study of selected highly up-regulated functionally important genes in this tissue may reveal new anti-schistosome intervention targets for schistosomiasis control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Neutrophils play a role in the pathogenesis of asthma, chronic obstructive pulmonary disease, and pulmonary infection. Impaired neutrophil phagocytosis predicts hospital-acquired infection. Despite this, remarkably few neutrophil-specific treatments exist. 

Objectives We sought to identify novel pathways for the restoration of effective neutrophil phagocytosis and to activate such pathways effectively in neutrophils from patients with impaired neutrophil phagocytosis. 

Methods Blood neutrophils were isolated from healthy volunteers and patients with impaired neutrophil function. In healthy neutrophils phagocytic impairment was induced experimentally by using β2-agonists. Inhibitors and activators of cyclic AMP (cAMP)-dependent pathways were used to assess the influence on neutrophil phagocytosis in vitro. 

Results β2-Agonists and corticosteroids inhibited neutrophil phagocytosis. Impairment of neutrophil phagocytosis by β2-agonists was associated with significantly reduced RhoA activity. Inhibition of protein kinase A (PKA) restored phagocytosis and RhoA activity, suggesting that cAMP signals through PKA to drive phagocytic impairment. However, cAMP can signal through effectors other than PKA, such as exchange protein directly activated by cyclic AMP (EPAC). An EPAC-activating analog of cAMP (8CPT-2Me-cAMP) reversed neutrophil dysfunction induced by β2-agonists or corticosteroids but did not increase RhoA activity. 8CPT-2Me-cAMP reversed phagocytic impairment induced by Rho kinase inhibition but was ineffective in the presence of Rap-1 GTPase inhibitors. 8CPT-2Me-cAMP restored function to neutrophils from patients with known acquired impairment of neutrophil phagocytosis. 

Conclusions EPAC activation consistently reverses clinical and experimental impairment of neutrophil phagocytosis. EPAC signals through Rap-1 and bypasses RhoA. EPAC activation represents a novel potential means by which to reverse impaired neutrophil phagocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal "translocation stop" activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation.

IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clostridium difficile is a leading cause of nosocomial infections, causing a spectrum of diseases ranging from diarrhoea to pseudomembranous colitis triggered by a range of virulence factors including C. difficile toxins A (TcdA) and B (TcdB). TcdA and TcdB are monoglucosyltransferases that irreversibly glycosylate small Rho GTPases, inhibiting their ability to interact with their effectors, guanine nucleotide exchange factors, and membrane partners, leading to disruption of downstream signalling pathways and cell death. In addition, TcdB targets the mitochondria, inducing the intrinsic apoptotic pathway resulting in TcdB-mediated apoptosis. Modulation of apoptosis is a common strategy used by infectious agents. Recently, we have shown that the enteropathogenic Escherichia coli (EPEC) type III secretion system effector NleH has a broad-range anti-apoptotic activity. In this study we examined the effects of NleH on cells challenged with TcdB. During infection with wild-type EPEC, NleH inhibited TcdB-induced apoptosis at both low and high toxin concentrations. Transfected nleH1 alone was sufficient to block TcdB-induced cell rounding, nuclear condensation, mitochondrial swelling and lysis, and activation of caspase-3. These results show that NleH acts via a global anti-apoptotic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review summarizes the research progress made over the past decade in the field of gastropod immunity resulting from investigations of the interaction between the snail Biomphalaria glabrata and its trematode parasites. A combination of integrated approaches, including cellular, genetic and comparative molecular and proteomic approaches have revealed novel molecular components involved in mediating Biomphalaria immune responses that provide insights into the nature of host-parasite compatibility and the mechanisms involved in parasite recognition and killing. The current overview emphasizes that the interaction between B. glabrata and its trematode parasites involves a complex molecular crosstalk between numerous antigens, immune receptors, effectors and anti-effector systems that are highly diverse structurally and extremely variable in expression between and within host and parasite populations. Ultimately, integration of these molecular signals will determine the outcome of a specific interaction between a B. glabrata individual and its interacting trematodes. Understanding these complex molecular interactions and identifying key factors that may be targeted to impairment of schistosome development in the snail host is crucial to generating new alternative schistosomiasis control strategies.