891 resultados para RNA isolation
Resumo:
Glioblastoma multiforme (GBM) is the most aggressive brain tumor that, by virtue of its resistance to chemotherapy and radiotherapy, is currently incurable. Identification of molecules whose targeting may eliminate GBM cells and/or sensitize glioblastoma cells to cytotoxic drugs is therefore urgently needed. CD44 is a major cell surface hyaluronan receptor and cancer stem cell marker that has been implicated in the progression of a variety of cancer types. However, the major downstream signaling pathways that mediate its protumor effects and the role of CD44 in the progression and chemoresponse of GBM have not been established. Here we show that CD44 is upregulated in GBM and that its depletion blocks GBM growth and sensitizes GBM cells to cytotoxic drugs in vivo. Consistent with this observation, CD44 antagonists potently inhibit glioma growth in preclinical mouse models. We provide the first evidence that CD44 functions upstream of the mammalian Hippo signaling pathway and that CD44 promotes tumor cell resistance to reactive oxygen species-induced and cytotoxic agent-induced stress by attenuating activation of the Hippo signaling pathway. Together, our results identify CD44 as a prime therapeutic target for GBM, establish potent antiglioma efficacy of CD44 antagonists, uncover a novel CD44 signaling pathway, and provide a first mechanistic explanation as to how upregulation of CD44 may constitute a key event in leading to cancer cell resistance to stresses of different origins. Finally, our results provide a rational explanation for the observation that functional inhibition of CD44 augments the efficacy of chemotherapy and radiation therapy.
Resumo:
The small nuclear RNA-activating protein complex SNAP(c) is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAP(c) contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF delta, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G(2)/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAP(c) subunit, leads to an accumulation of cells with a G(0)/G(1) DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAP(c) and another as a factor required for proper mitotic progression.
Resumo:
The goal of adoptive T cell therapy in cancer is to provide effective antitumor immunity by transfer of selected populations of tumor Ag-specific T cells. Transfer of T cells with high TCR avidity is critical for in vivo efficacy. In this study, we demonstrate that fluorescent peptide/MHC class I multimeric complexes incorporating mutations in the alpha3 domain (D227K/T228A) that abrogate binding to the CD8 coreceptor can be used to selectively isolate tumor Ag-specific T cells of high functional avidity from both in vitro expanded and ex vivo T cell populations. Sorting, cloning, and expansion of alpha3 domain mutant multimer-positive CD8 T cells enabled rapid selection of high avidity tumor-reactive T cell clones. Our results are relevant for ex vivo identification and isolation of T cells with potent antitumor activity for adoptive T cell therapy.
Resumo:
A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.
Resumo:
Little is known about the relation between the genome organization and gene expression in Leishmania. Bioinformatic analysis can be used to predict genes and find homologies with known proteins. A model was proposed, in which genes are organized into large clusters and transcribed from only one strand, in the form of large polycistronic primary transcripts. To verify the validity of this model, we studied gene expression at the transcriptional, post-transcriptional and translational levels in a unique locus of 34kb located on chr27 and represented by cosmid L979. Sequence analysis revealed 115 ORFs on either DNA strand. Using computer programs developed for Leishmania genes, only nine of these ORFs, localized on the same strand, were predicted to code for proteins, some of which show homologies with known proteins. Additionally, one pseudogene, was identified. We verified the biological relevance of these predictions. mRNAs from nine predicted genes and proteins from seven were detected. Nuclear run-on analyses confirmed that the top strand is transcribed by RNA polymerase II and suggested that there is no polymerase entry site. Low levels of transcription were detected in regions of the bottom strand and stable transcripts were identified for four ORFs on this strand not predicted to be protein-coding. In conclusion, the transcriptional organization of the Leishmania genome is complex, raising the possibility that computer predictions may not be comprehensive.
Resumo:
To investigate the potential for host-parasite coadaptation between bats and their wing mites, we developed microsatellite loci for two species of Spinturnix mites. For Spinturnix myoti, parasite of Myotis myotis, we were able to develop nine polymorphic loci and screened them in 100 mites from five bat colonies. For S. bechsteini, parasite of M. bechsteinii, we developed five polymorphic loci, which were also screened in 100 mites from five bat colonies. In both species, all markers were highly polymorphic (22-46 and 6-23 alleles per locus respectively). The majority of markers for both species exhibited departure from Hardy-Weinberg proportions (8 of 9 and 3 of 5, respectively). One marker pair in S. myoti showed evidence for linkage disequilibrium. As the observed departures from Hardy-Weinberg proportions are most likely a consequence of the biology of the mites, the described microsatellite loci should be useful in studying population genetics and host-parasite dynamics of Spinturnix myoti and Spinturnix bechsteini in relation to their bat hosts.
Resumo:
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
Orphan receptors of the FTZ-F1-related group of nuclear receptors (xFF1r) were identified in Xenopus laevis by isolation of cDNAs from a neurula stage library. Two cDNAs were found, which encode full length, highly related receptor proteins, xFF1rA and B, whose closet relative known so far is the murine LRH-1 orphan receptor. xFF1rA protein expressed by a recombinant vaccinia virus system specifically binds to FTZ-F1 response elements (FRE; PyCAAGGPyCPu). In cotransfection studies, xFF1rA constitutively activates transcription, in a manner dependent on the number of FREs. The amounts of at least four mRNAs encoding full-length receptors greatly increase between gastrula and early tailbud stages and decrease at later stages. At early tailbud stages, xFTZ-F1-related antigens are found in all nuclei of the embryo.
Resumo:
Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3′UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.
Resumo:
Poor understanding of the spliceosomal mechanisms to select intronic 3' ends (3'ss) is a major obstacle to deciphering eukaryotic genomes. Here, we discern the rules for global 3'ss selection in yeast. We show that, in contrast to the uniformity of yeast splicing, the spliceosome uses all available 3'ss within a distance window from the intronic branch site (BS), and that in 70% of all possible 3'ss this is likely to be mediated by pre-mRNA structures. Our results reveal that one of these RNA folds acts as an RNA thermosensor, modulating alternative splicing in response to heat shock by controlling alternate 3'ss availability. Thus, our data point to a deeper role for the pre-mRNA in the control of its own fate, and to a simple mechanism for some alternative splicing.
Resumo:
ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.
Resumo:
The circadian clock drives the rhythmic expression of a broad array of genes that orchestrate metabolism, sleep wake behavior, and the immune response. Clock genes are transcriptional regulators engaged in the generation of circadian rhythms. The cold inducible RNA-binding protein (CIRBP) guarantees high amplitude expression of clock. The cytokines TNF and TGFβ impair the expression of clock genes, namely the period genes and the proline- and acidic amino acid-rich basic leucine zipper (PAR-bZip) clock-controlled genes. Here, we show that TNF and TGFβ impair the expression of Cirbp in fibroblasts and neuronal cells. IL-1β, IL-6, IFNα, and IFNγ do not exert such effects. Depletion of Cirbp is found to increase the susceptibility of cells to the TNF-mediated inhibition of high amplitude expression of clock genes and modulates the TNF-induced cytokine response. Our findings reveal a new mechanism of cytokine-regulated expression of clock genes.
Resumo:
Morphological descriptors are practical and essential biomarkers for diagnosis andtreatment selection for intracranial aneurysm management according to the current guidelinesin use. Nevertheless, relatively little work has been dedicated to improve the three-dimensionalquanti cation of aneurysmal morphology, automate the analysis, and hence reduce the inherentintra- and inter-observer variability of manual analysis. In this paper we propose a methodologyfor the automated isolation and morphological quanti cation of saccular intracranial aneurysmsbased on a 3D representation of the vascular anatomy.