897 resultados para REGENERATIVE NICHE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palms show clear niche segregation patterns along topographic gradients in tropical forests, with some species associated to terra firme and others to seasonally flooded areas. The aim of this study was to quantitatively describe the fine-scale spatial variation within a palm community, tracking the changes in species' abundance along environmental gradients associated with a perennial stream the eastern Amazon. The study of palm communities was based on 60 forest plots in which all adult palms were counted. We found a total of 566 palms in a community containing 11 species. Furthermore, we found a significant separation in the palm community between seasonally-flooded and terra firme forests. We found a gradient with various densities of the three most abundant palm species within the first 100 m away from the flooded area. Other species were located exclusively in the terra firme forest. The abundance of the six most common species were distributed in relation to humidity gradients from floodplains to terra firme, with palm distribution from the most flood-tolerant to the least flood-tolerant palm species as follows: Euterpe oleracea, Attalea phalerata and Socratea exorrhiza (species with floodplain affinity), Astrocaryum gynacanthum, Astrocaryum aculeatum, Attalea maripa (species with terra firme affinity)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

‘Gypsy economy’ is a conceptual fiction as well as a matter of lived experience. First, it heuristically stabilises analytical focus on diverse economic practices of those traditionally labelled by states majorities as ‘Gypsies’ (Roma, Sinti, Travellers, peoples that identify as Gypsies, and so on). Second, it is a condensed image that makes visible recent changes in the relationship between the society, the state and the market. Ethnographic studies of Romani communities that have experienced marginalisation in relation to the dominant work ethics, informal employment and precarity for generations, but who nevertheless face their situation with self-determination and creativity that they find meaningful, therefore promises to add to the ways of thinking about human economy under the latest capitalism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACTResource partitioning is important for species coexistence. Species with similar ecomorphology are potential competitors, especially when phylogenetically close, due to niche conservatism. The aim of this study was to investigate the resource partitioning among populations of two species of lebiasinids (Copella nigrofasciata and Pyrrhulina aff. brevis) that co-occur in a first-order Amazonian stream, analyzing the trophic ecology, feeding strategies and ecomorphological attributes related to the use of food and space by these species. Fish were captured in May and September 2010. The stomach contents of 60 individuals were analyzed and quantified volumetrically to characterize the feeding ecology of both species. Eleven morphological attributes were measured in 20 specimens and combined in nine ecomorphological indices. Both species had an omnivorous-invertivorous diet and consumed predominantly allochthonous items. Both showed a tendency to a generalist diet, but intrapopulational variation in resource use was also detected. Overall feeding niche overlap was high, but differed between seasons: low during the rainy season and high in the dry season. In the latter, the food niche overlap was asymmetric because C. nigrofasciata consumed several prey of P. aff. brevis, which reduced its food spectrum. The ecomorphological analysis suggests that C. nigrofasciatahas greater swimming capacity (greater relative length of caudal peduncle) than P. aff. brevis, which has greater maneuverability and tendency to inhabit lentic environments (greater relative depth of the body). Our results demonstrate that these species have similar trophic ecology and suggest a spatial segregation, given by morphological differences related to locomotion and occupation of habitat, favoring their coexistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of self-standing multilayered structures based on biopolymers has been attracting increasing interest due to their potential in the biomedical field. However, their use has been limited due to their gel-like properties. Herein, we report the combination of covalent and ionic cross-linking, using natural and non-cytotoxic cross-linkers, such as genipin and calcium chloride (CaCl2). Combining both cross-linking types the mechanical properties of the multilayers increased and the water uptake ability decreased. The ionic cross-linking of multilayered chitosan (CHI)â alginate (ALG) films led to freestanding membranes with multiple interesting properties, such as: improved mechanical strength, calcium-induced adhesion and shape memory ability. The use of CaCl2 also offered the possibility of reversibly switching all of these properties by simple immersion in a chelate solution. We attribute the switch-ability of the mechanical properties, shape memory ability and the propensity for induced-adhesion to the ionic cross-linking of the multilayers. These findings suggested the potential of the developed polysaccharide freestanding membranes in a plethora of research fields, including in biomedical and biotechnological fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multilayer systems obtained using the Layer-by-Layer (LbL) technology have been proposed for a variety of biomedical applications in tissue engineering and regenerative medicine. LbL assembly is a simple and highly versatile method to modify surfaces and fabricate robust and highly-ordered nanostructured coatings over almost any type of substrates and with a wide range of substances. The incorporation of polyoxometalate (POM) inorganic salts as constituents of the layers presents a possibility of promoting light-stimuli responses in LbL substrates. We propose the design of a biocompatible photo-responsive multilayer system based on a Preyssler-type POM ([NaP5W30O110]14â ) and a natural origin polymer, chitosan, using the LbL methodology. The photo-reduction properties of the POM allow the spatially controlled disruption of the assembled layers due to the weakening of the electrostatic interactions between the layers. This system has found applicability in detaching devices, such as the cell sheet technology, which may solve the drawbacks actually found in other cell treatment proposals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural deep eutectic solvents (NADES) have shown to be promising sustainable media for a wide range of applications. Nonetheless, very limited data is available on the properties of these solvents. A more comprehensive body of data on NADES is required for a deeper understanding of these solvents at molecular level, which will undoubtedly foster the development of new applications. NADES based on choline chloride, organic acids, amino acids and sugars were prepared, and their density, thermal behavior, conductivity and polarity were assessed, for different NADES compositions. The NADES studied can be stable up to 170 Â°C, depending on their composition. The thermal characterization revealed that all the NADES are glass formers and some, after water removal, exhibit crystallinity. The morphological characterization of the crystallizable materials was performed using polarized optical microscopy which also provided evidence of homogeneity/phase separation. The conductivity of the NADES was also assessed from 0 to 40 Â°C. The more polar, organic acid-based NADES presented the highest conductivities. The conductivity dependence on temperature was well described by the Vogelâ Fulcherâ Tammann equation for some of the NADES studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obt ained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation met hod and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v k-carrageenan solution at a cell density of 5  10 6 cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that k-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mec hanical analysis demonstrated an increase in stiffness and viscoelastic properties of k-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that k-carrageenan exhibits properties t hat enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the â stem cell nicheâ , the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When combined at particular molar fractions, sugars, aminoacids or organic acids a present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES and are envisaged to play a major role on the chemical engineering processes of the future. Nonetheless, there is a significant lack of knowledge of its fundamental and basic properties, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development [1]. In this work, we have developed and characterized NADES based on choline chloride, organic acids, amino acids and sugars. Their density, thermal behavior, conductivity and polarity were assessed for different compositions. The conductivity was measured from 0 to 40 °C and the temperature effect was well described by the Vogel-Fulcher-Tammann equation. The morphological characterization of the crystallizable materials was done by polarized optical microscopy that provided also evidence of homogeneity/phase separation. Additionally, the rheological and thermodynamic properties of the NADES and the effect of water content were also studied. The results show these systems have Newtonian behavior and present significant viscosity decrease with temperature and water content, due to increase on the molecular mobility. The anhydrous systems present viscosities that range from higher than 1000Pa.s at 20°C to less than 1Pa.s at 70°C. DSC characterization confirms that for water content as high as 1:1:1 molar ratio, the mixture retains its single phase behavior. The results obtained demonstrate that the NADES properties can be finely tunned by careful selection of its constituents. NADES present the necessary properties for use as extraction solvents. They can be prepared from inexpensive raw materials and tailored for the selective extraction of target molecules. The data produced in this work is hereafter importance for the selection of the most promising candidates avoiding a time consuming and expensive trial and error phase providing also data for the development of models able to predict their properties and the mechanisms that allow the formation of the deep eutectic mixtures.