943 resultados para Quality models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Interventions to increase cooking skills (CS) and food skills (FS) as a route to improving overall diet are popular within public health. This study tested a comprehensive model of diet quality by assessing the influence of socio-demographic, knowledge- and psychological-related variables alongside perceived CS and FS abilities. The correspondence of two measures of diet quality further validated the Eating Choices Index (ECI) for use in quantitative research.
Methods: A cross-sectional survey was conducted in a quota-controlled nationally representative sample of 1049 adults aged 20–60 years drawn from the Island of Ireland. Surveys were administered in participants’ homes via computer-assisted personal interviewing (CAPI) assessing a range of socio-demographic, knowledge- and psychological-related variables alongside perceived CS and FS abilities. Regression models were used to model factors influencing diet quality. Correspondence between 2 measures of diet quality was assessed using chi-square and Pearson correlations.
Results: ECI score was significantly negatively correlated with DINE Fat intake (r = -0.24, p < 0.001), and ECI score was significantly positively correlated with DINE Fibre intake (r = 0.38, p < 0.001), demonstrating a high agreement. Findings indicated that males, younger respondents and those with no/few educational qualifications scored significantly lower on both CS and FS abilities. The relative influence of socio-demographic, knowledge, psychological variables and CS and FS abilities on dietary outcomes varied, with regression models explaining 10–20 % of diet quality variance. CS ability exerted the strongest relationship with saturated fat intake (β = -0.296, p < 0.001) and was a significant predictor of fibre intake (β = -0.113, p < 0.05), although not for healthy food choices (ECI) (β = 0.04, p > 0.05).
Conclusion: Greater CS and FS abilities may not lead directly to healthier dietary choices given the myriad of other factors implicated; however, CS appear to have differential influences on aspects of the diet, most notably in relation to lowering saturated fat intake. Findings suggest that CS and FS should not be singular targets of interventions designed to improve diet; but targeting specific sub-groups of the population e.g. males, younger adults, those with limited education might be more fruitful. A greater understanding of the interaction of factors influencing cooking and food practices within the home is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To study, for the first time, the effect of wearing ready-made glasses and glasses with power determined by self-refraction on children's quality of life. METHODS: This is a randomized, double-masked non-inferiority trial. Children in grades 7 and 8 (age 12-15 years) in nine Chinese secondary schools, with presenting visual acuity (VA) ≤6/12 improved with refraction to ≥6/7.5 bilaterally, refractive error ≤-1.0 D and <2.0 D of anisometropia and astigmatism bilaterally, were randomized to receive ready-made spectacles (RM) or identical-appearing spectacles with power determined by: subjective cycloplegic retinoscopy by a university optometrist (U), a rural refractionist (R) or non-cycloplegic self-refraction (SR). Main study outcome was global score on the National Eye Institute Refractive Error Quality of Life-42 (NEI-RQL-42) after 2 months of wearing study glasses, comparing other groups with the U group, adjusting for baseline score. RESULTS: Only one child (0.18%) was excluded for anisometropia or astigmatism. A total of 426 eligible subjects (mean age 14.2 years, 84.5% without glasses at baseline) were allocated to U [103 (24.2%)], RM [113 (26.5%)], R [108 (25.4%)] and SR [102 (23.9%)] groups, respectively. Baseline and endline score data were available for 398 (93.4%) of subjects. In multiple regression models adjusting for baseline score, older age (p = 0.003) and baseline spectacle wear (p = 0.016), but not study group assignment, were significantly associated with lower final score. CONCLUSION: Quality of life wearing ready-mades or glasses based on self-refraction did not differ from that with cycloplegic refraction by an experienced optometrist in this non-inferiority trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly dynamic nature of some sandy shores with continuous morphological changes require the development of efficient and accurate methodological strategies for coastal hazard assessment and morphodynamic characterisation. During the past decades, the general methodological approach for the establishment of coastal monitoring programmes was based on photogrammetry or classical geodetic techniques. With the advent of new geodetic techniques, space-based and airborne-based, new methodologies were introduced in coastal monitoring programmes. This paper describes the development of a monitoring prototype that is based on the use of global positioning system (GPS). The prototype has a GPS multiantenna mounted on a fast surveying platform, a land vehicle appropriate for driving in the sand (four-wheel quad). This system was conceived to perform a network of shore profiles in sandy shores stretches (subaerial beach) that extend for several kilometres from which high-precision digital elevation models can be generated. An analysis of the accuracy and precision of some differential GPS kinematic methodologies is presented. The development of an adequate survey methodology is the first step in morphodynamic shore characterisation or in coastal hazard assessment. The sample method and the computational interpolation procedures are important steps for producing reliable three-dimensional surface maps that are real as possible. The quality of several interpolation methods used to generate grids was tested in areas where there were data gaps. The results obtained allow us to conclude that with the developed survey methodology, it is possible to Survey sandy shores stretches, under spatial scales of kilometers, with a vertical accuracy of greater than 0.10 m in the final digital elevation models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current practices in agricultural management involve the application of rules and techniques to ensure high quality and environmentally friendly production. Based on their experience, agricultural technicians and farmers make critical decisions affecting crop growth while considering several interwoven agricultural, technological, environmental, legal and economic factors. In this context, decision support systems and the knowledge models that support them, enable the incorporation of valuable experience into software systems providing support to agricultural technicians to make rapid and effective decisions for efficient crop growth. Pest control is an important issue in agricultural management due to crop yield reductions caused by pests and it involves expert knowledge. This paper presents a formalisation of the pest control problem and the workflow followed by agricultural technicians and farmers in integrated pest management, the crop production strategy that combines different practices for growing healthy crops whilst minimising pesticide use. A generic decision schema for estimating infestation risk of a given pest on a given crop is defined and it acts as a metamodel for the maintenance and extension of the knowledge embedded in a pest management decision support system which is also presented. This software tool has been implemented by integrating a rule-based tool into web-based architecture. Evaluation from validity and usability perspectives concluded that both agricultural technicians and farmers considered it a useful tool in pest control, particularly for training new technicians and inexperienced farmers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to present the models and the strategies of adoption of e-learning in a group of European universities, most of them located in the regions called “the four motors of Europe” (Baden-Württenberg, Catalunya, Lombardy and Rhône-Alpes) and in Switzerland. Our analysis focuses on four dimensions: the rationale behind the introduction of e-learning, the organisation of the activities and, in particular, the existence of a university centre for e-learning, the type of activities, and, finally, the type of public reached by e-learning. The majority of campus universities in our sample introduced e-learning to improve the quality of education of their students and, for the most part, as a support for existing courses. Some of the campus universities went even further insofar as they have introduced some online courses into their curricula. This has led to forms of cooperation where different universities share some of their courses. Finally, a small number of campus universities have included as part of their educational offer full distance degree programs which can be attended also by non residential students. The above cases show that there is no general move from campus universities towards distance education, but rather a more selective behaviour. Thus we conclude that e-learning, although it is undoubtedly spreading in both distance and presence universities, is not yet bringing fundamental changes in the institutions themselves. E-learning is at the moment integrated into the existing organization and educational offer. (DIPF/Orig.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plantings of mixed native species (termed 'environmental plantings') are increasingly being established for carbon sequestration whilst providing additional environmental benefits such as biodiversity and water quality. In Australia, they are currently one of the most common forms of reforestation. Investment in establishing and maintaining such plantings relies on having a cost-effective modelling approach to providing unbiased estimates of biomass production and carbon sequestration rates. In Australia, the Full Carbon Accounting Model (FullCAM) is used for both national greenhouse gas accounting and project-scale sequestration activities. Prior to undertaking the work presented here, the FullCAM tree growth curve was not calibrated specifically for environmental plantings and generally under-estimated their biomass. Here we collected and analysed above-ground biomass data from 605 mixed-species environmental plantings, and tested the effects of several planting characteristics on growth rates. Plantings were then categorised based on significant differences in growth rates. Growth of plantings differed between temperate and tropical regions. Tropical plantings were relatively uniform in terms of planting methods and their growth was largely related to stand age, consistent with the un-calibrated growth curve. However, in temperate regions where plantings were more variable, key factors influencing growth were planting width, stand density and species-mix (proportion of individuals that were trees). These categories provided the basis for FullCAM calibration. Although the overall model efficiency was only 39-46%, there was nonetheless no significant bias when the model was applied to the various planting categories. Thus, modelled estimates of biomass accumulation will be reliable on average, but estimates at any particular location will be uncertain, with either under- or over-prediction possible. When compared with the un-calibrated yield curves, predictions using the new calibrations show that early growth is likely to be more rapid and total above-ground biomass may be higher for many plantings at maturity. This study has considerably improved understanding of the patterns of growth in different types of environmental plantings, and in modelling biomass accumulation in young (<25. years old) plantings. However, significant challenges remain to understand longer-term stand dynamics, particularly with temporal changes in stand density and species composition. © 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although tyrosine kinase inhibitors (TKIs) such as imatinib have transformed chronic myelogenous leukemia (CML) into a chronic condition, these therapies are not curative in the majority of cases. Most patients must continue TKI therapy indefinitely, a requirement that is both expensive and that compromises a patient's quality of life. While TKIs are known to reduce leukemic cells' proliferative capacity and to induce apoptosis, their effects on leukemic stem cells, the immune system, and the microenvironment are not fully understood. A more complete understanding of their global therapeutic effects would help us to identify any limitations of TKI monotherapy and to address these issues through novel combination therapies. Mathematical models are a complementary tool to experimental and clinical data that can provide valuable insights into the underlying mechanisms of TKI therapy. Previous modeling efforts have focused on CML patients who show biphasic and triphasic exponential declines in BCR-ABL ratio during therapy. However, our patient data indicates that many patients treated with TKIs show fluctuations in BCR-ABL ratio yet are able to achieve durable remissions. To investigate these fluctuations, we construct a mathematical model that integrates CML with a patient's autologous immune response to the disease. In our model, we define an immune window, which is an intermediate range of leukemic concentrations that lead to an effective immune response against CML. While small leukemic concentrations provide insufficient stimulus, large leukemic concentrations actively suppress a patient's immune system, thus limiting it's ability to respond. Our patient data and modeling results suggest that at diagnosis, a patient's high leukemic concentration is able to suppress their immune system. TKI therapy drives the leukemic population into the immune window, allowing the patient's immune cells to expand and eventually mount an efficient response against the residual CML. This response drives the leukemic population below the immune window, causing the immune population to contract and allowing the leukemia to partially recover. The leukemia eventually reenters the immune window, thus stimulating a sequence of weaker immune responses as the two populations approach equilibrium. We hypothesize that a patient's autologous immune response to CML may explain the fluctuations in BCR-ABL ratio that are regularly seen during TKI therapy. These fluctuations may serve as a signature of a patient's individual immune response to CML. By applying our modeling framework to patient data, we are able to construct an immune profile that can then be used to propose patient-specific combination therapies aimed at further reducing a patient's leukemic burden. Our characterization of a patient's anti-leukemia immune response may be especially valuable in the study of drug resistance, treatment cessation, and combination therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss decoherence in discrete-time quantum walks in terms of a phenomenological model that distinguishes spin and spatial decoherence. We identify the dominating mechanisms that affect quantum-walk experiments realized with neutral atoms walking in an optical lattice. From the measured spatial distributions, we determine with good precision the amount of decoherence per step, which provides a quantitative indication of the quality of our quantum walks. In particular, we find that spin decoherence is the main mechanism responsible for the loss of coherence in our experiment. We also find that the sole observation of ballistic-instead of diffusive-expansion in position space is not a good indicator of the range of coherent delocalization. We provide further physical insight by distinguishing the effects of short- and long-time spin dephasing mechanisms. We introduce the concept of coherence length in the discrete-time quantum walk, which quantifies the range of spatial coherences. Unexpectedly, we find that quasi-stationary dephasing does not modify the local properties of the quantum walk, but instead affects spatial coherences. For a visual representation of decoherence phenomena in phase space, we have developed a formalism based on a discrete analogue of the Wigner function. We show that the effects of spin and spatial decoherence differ dramatically in momentum space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People, animals and the environment can be exposed to multiple chemicals at once from a variety of sources, but current risk assessment is usually carried out based on one chemical substance at a time. In human health risk assessment, ingestion of food is considered a major route of exposure to many contaminants, namely mycotoxins, a wide group of fungal secondary metabolites that are known to potentially cause toxicity and carcinogenic outcomes. Mycotoxins are commonly found in a variety of foods including those intended for consumption by infants and young children and have been found in processed cereal-based foods available in the Portuguese market. The use of mathematical models, including probabilistic approaches using Monte Carlo simulations, constitutes a prominent issue in human health risk assessment in general and in mycotoxins exposure assessment in particular. The present study aims to characterize, for the first time, the risk associated with the exposure of Portuguese children to single and multiple mycotoxins present in processed cereal-based foods (CBF). Portuguese children (0-3 years old) food consumption data (n=103) were collected using a 3 days food diary. Contamination data concerned the quantification of 12 mycotoxins (aflatoxins, ochratoxin A, fumonisins and trichothecenes) were evaluated in 20 CBF samples marketed in 2014 and 2015 in Lisbon; samples were analyzed by HPLC-FLD, LC-MS/MS and GC-MS. Daily exposure of children to mycotoxins was performed using deterministic and probabilistic approaches. Different strategies were used to treat the left censored data. For aflatoxins, as carcinogenic compounds, the margin of exposure (MoE) was calculated as a ratio of BMDL (benchmark dose lower confidence limit) to the aflatoxin exposure. The magnitude of the MoE gives an indication of the risk level. For the remaining mycotoxins, the output of exposure was compared to the dose reference values (TDI) in order to calculate the hazard quotients (ratio between exposure and a reference dose, HQ). For the cumulative risk assessment of multiple mycotoxins, the concentration addition (CA) concept was used. The combined margin of exposure (MoET) and the hazard index (HI) were calculated for aflatoxins and the remaining mycotoxins, respectively. 71% of CBF analyzed samples were contaminated with mycotoxins (with values below the legal limits) and approximately 56% of the studied children consumed CBF at least once in these 3 days. Preliminary results showed that children exposure to single mycotoxins present in CBF were below the TDI. Aflatoxins MoE and MoET revealed a reduced potential risk by exposure through consumption of CBF (with values around 10000 or more). HQ and HI values for the remaining mycotoxins were below 1. Children are a particularly vulnerable population group to food contaminants and the present results point out an urgent need to establish legal limits and control strategies regarding the presence of multiple mycotoxins in children foods in order to protect their health. The development of packaging materials with antifungal properties is a possible solution to control the growth of moulds and consequently to reduce mycotoxin production, contributing to guarantee the quality and safety of foods intended for children consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to examine the antecedents and correlates of children’s mental representations of attachment at 5 years (Attachment Story Completion Task, Bretherton, Ridgeway, & Cassidy, 1990; MacArthur Story Stem Battery, Bretherton, Oppenheim, Buchsbaum, Emde, & the MacArthur Narrative Group, 1990). Predictors included children’s attachment security with mothers and fathers assessed via the Attachment Q-Set (AQS, Waters, 1987) at 3 years, and parent-child narrative quality regarding positive and negative events at 5 years. Participants included 71 children and their mothers and fathers. Structural equation models (SEM) indicated that children’s attachment security exerted a significant indirect effect on children’s mental representations through parent-child narrative quality. Specifically, children’s attachment security with fathers was related to their mental representations via father-child reminiscing about positive events, and children’s attachment security with mothers was related to their mental representations via mother-child reminiscing about negative events. Results are discussed in terms of the development and implications of attachment relationships within the family context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: persons who are 65 years or older often spend an important part of their lives indoors thus adverse indoor climate might influence their health status. Objective: to evaluate the influence of indoor air quality and contaminants on older people’s respiratory health. Design: cross-sectional study. Setting: 21 long-term care residences (LTC) in the city of Porto, Portugal. Subjects: older people living in LTC with ≥65 years old. Methods: the Portuguese version of BOLD questionnaire was administered by an interviewer to older residents able to participate (n = 143). Indoor air contaminants (IAC) were measured twice, during winter and summer in 135 areas. Mixed effects logistic regression models were used to study the association between the health questionnaire results and the monitored IAC, adjusted for age, smoking habits, gender and number of years living in the LTC. Results: cough (23%) and sputum (12%) were the major respiratory symptoms, and allergic rhinitis (18%) the main selfreported illness. Overall particulate matter up to 2.5 micrometres in size median concentration was above the reference levels both in winter and summer seasons. Peak values of particulate matter up to 10 micrometres in size (PM10), total volatile organic compounds, carbon dioxide, bacteria and fungi exceeded the reference levels. Older people exposed to PM10 above the reference levels demonstrated higher odds of allergic rhinitis (OR = 2.9, 95% CI: 1.1–7.2). Conclusion: high levels of PM10 were associated with 3-fold odds of allergic rhinitis. No association was found between indoor air chemical and biological contaminants and respiratory symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.