884 resultados para Protein Degradation
Resumo:
Incremental truncation for the creation of hybrid enzymes (ITCHY) is a novel tool for the generation of combinatorial libraries of hybrid proteins independent of DNA sequence homology. We herein report a fundamentally different methodology for creating incremental truncation libraries using nucleotide triphosphate analogs. Central to the method is the polymerase catalyzed, low frequency, random incorporation of α-phosphothioate dNTPs into the region of DNA targeted for truncation. The resulting phosphothioate internucleotide linkages are resistant to 3′→5′ exonuclease hydrolysis, rendering the target DNA resistant to degradation in a subsequent exonuclease III treatment. From an experimental perspective the protocol reported here to create incremental truncation libraries is simpler and less time consuming than previous approaches by combining the two gene fragments in a single vector and eliminating additional purification steps. As proof of principle, an incremental truncation library of fusions between the N-terminal fragment of Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and the C-terminal fragment of human glycinamide ribonucleotide formyltransferase (hGART) was prepared and successfully tested for functional hybrids in an auxotrophic E.coli host strain. Multiple active hybrid enzymes were identified, including ones fused in regions of low sequence homology.
Resumo:
SsrA RNA acts as a tRNA and mRNA to modify proteins whose synthesis on ribosomes has stalled. Such proteins are marked for degradation by addition of peptide tags to their C termini in a reaction mediated by SsrA RNA and SmpB, a specific SsrA-RNA binding protein. Evidence is presented here for the existence of a larger ribonucleoprotein complex that contains ribosomal protein S1, phosphoribosyl pyrophosphate synthase, RNase R, and YfbG in addition to SsrA RNA and SmpB. Biochemical, genetic, and phylogenetic results suggest potential roles for some of these factors in various stages of the ribosome rescue and tagging process and/or the presence of functional interactions between one or more of these proteins and SsrA.
Resumo:
The human brm (hbrm) protein (homologue of the Drosophila melanogaster brahma and Saccharomyces cervisiae SNF-2 proteins) is part of a polypeptide complex believed to regulate chromatin conformation. We have shown that the hbrm protein is cleaved in NB4 leukemic cells after induction of apoptosis by UV-irradiation, DNA damaging agents, or staurosporine. Because hbrm is found only in the nucleus, we have investigated the nature of the proteases that may regulate the degradation of this protein during apoptosis. In an in vitro assay, the hbrm protein could not be cleaved by caspase-3, -7, or -6, the “effector” caspases generally believed to carry out the cleavage of nuclear protein substrates. In contrast, we find that cathepsin G, a granule enzyme found in NB4 cells, cleaves hbrm in a pattern similar to that observed in vivo during apoptosis. In addition, a peptide inhibitor of cathepsin G blocks hbrm cleavage during apoptosis but does not block activation of caspases or cleavage of the nuclear protein polyADP ribose polymerase (PARP). Although localized in granules and in the Golgi complex in untreated cells, cathepsin G becomes diffusely distributed during apoptosis. Cleavage by cathepsin G removes a 20-kDa fragment containing a bromodomain from the carboxyl terminus of hbrm. This cleavage disrupts the association between hbrm and the nuclear matrix; the 160-kDa hbrm cleavage fragment is less tightly associated with the nuclear matrix than full-length hbrm.
Resumo:
The poly(A)-binding protein (PABP) recognizes the 3′ mRNA poly(A) tail and plays an essential role in eukaryotic translation initiation and mRNA stabilization/degradation. PABP is a modular protein, with four N-terminal RNA-binding domains and an extensive C terminus. The C-terminal region of PABP is essential for normal growth in yeast and has been implicated in mediating PABP homo-oligomerization and protein–protein interactions. A small, proteolytically stable, highly conserved domain has been identified within this C-terminal segment. Remarkably, this domain is also present in the hyperplastic discs protein (HYD) family of ubiquitin ligases. To better understand the function of this conserved region, an x-ray structure of the PABP-like segment of the human HYD protein has been determined at 1.04-Å resolution. The conserved domain adopts a novel fold resembling a right-handed supercoil of four α-helices. Sequence profile searches and comparative protein structure modeling identified a small ORF from the Arabidopsis thaliana genome that encodes a structurally similar but distantly related PABP/HYD domain. Phylogenetic analysis of the experimentally determined (HYD) and homology modeled (PABP) protein surfaces revealed a conserved feature that may be responsible for binding to a PABP interacting protein, Paip1, and other shared interaction partners.
Resumo:
Secretory proteins that fail to fold in the endoplasmic reticulum (ER) are transported back to the cytosol and degraded by proteasomes. It remains unclear how the cell distinguishes between folding intermediates and misfolded proteins. We asked whether misfolded secretory proteins are covalently modified in the ER before export. We found that a fraction of mutant alpha-factor precursor, but not the wild type, was progressively O-mannosylated in microsomes and in intact yeast cells by protein O-mannosyl transferase 2 (Pmt2p). O-Mannosylation increased significantly in vitro under ER export conditions, i.e., in the presence of ATP and cytosol, and this required export-proficient Sec61p in the ER membrane. Deletion of PMT2, however, did not abrogate mutant alpha-factor precursor degradation but, rather, enhanced its turnover in intact yeast cells. In vitro, O-mannosylated mutant alpha-factor precursor was stable and protease protected, and a fraction was associated with Sec61p in the ER lumen. Thus, prolonged ER residence allows modification of exposed O-mannosyl acceptor sites in misfolded proteins, which abrogates misfolded protein export from the ER at a posttargeting stage. We conclude that there is a limited window of time during which misfolded proteins can be removed from the ER before they acquire inappropriate modifications that can interfere with disposal through the Sec61 channel.
Resumo:
Many persistent viruses have evolved the ability to subvert MHC class I antigen presentation. Indeed, human cytomegalovirus (HCMV) encodes at least four proteins that down-regulate cell-surface expression of class I. The HCMV unique short (US)2 glycoprotein binds newly synthesized class I molecules within the endoplasmic reticulum (ER) and subsequently targets them for proteasomal degradation. We report the crystal structure of US2 bound to the HLA-A2/Tax peptide complex. US2 associates with HLA-A2 at the junction of the peptide-binding region and the α3 domain, a novel binding surface on class I that allows US2 to bind independently of peptide sequence. Mutation of class I heavy chains confirms the importance of this binding site in vivo. Available data on class I-ER chaperone interactions indicate that chaperones would not impede US2 binding. Unexpectedly, the US2 ER-luminal domain forms an Ig-like fold. A US2 structure-based sequence alignment reveals that seven HCMV proteins, at least three of which function in immune evasion, share the same fold as US2. The structure allows design of further experiments to determine how US2 targets class I molecules for degradation.
Resumo:
Smads are signal mediators for the members of the transforming growth factor-β (TGF-β) superfamily. Upon phosphorylation by the TGF-β receptors, Smad3 translocates into the nucleus, recruits transcriptional coactivators and corepressors, and regulates transcription of target genes. Here, we show that Smad3 activated by TGF-β is degraded by the ubiquitin–proteasome pathway. Smad3 interacts with a RING finger protein, ROC1, through its C-terminal MH2 domain in a ligand-dependent manner. An E3 ubiquitin ligase complex ROC1-SCFFbw1a consisting of ROC1, Skp1, Cullin1, and Fbw1a (also termed βTrCP1) induces ubiquitination of Smad3. Recruitment of a transcriptional coactivator, p300, to nuclear Smad3 facilitates the interaction with the E3 ligase complex and triggers the degradation process of Smad3. Smad3 bound to ROC1-SCFFbw1a is then exported from the nucleus to the cytoplasm for proteasomal degradation. TGF-β/Smad3 signaling is thus irreversibly terminated by the ubiquitin–proteasome pathway.
Resumo:
The intracellular levels of many proteins are regulated by ubiquitin-dependent proteolysis. One of the best-characterized enzymes that catalyzes the attachment of ubiquitin to proteins is a ubiquitin ligase complex, Skp1-Cullin-F box complex containing Hrt1 (SCF). We sought to artificially target a protein to the SCF complex for ubiquitination and degradation. To this end, we tested methionine aminopeptidase-2 (MetAP-2), which covalently binds the angiogenesis inhibitor ovalicin. A chimeric compound, protein-targeting chimeric molecule 1 (Protac-1), was synthesized to recruit MetAP-2 to SCF. One domain of Protac-1 contains the IκBα phosphopeptide that is recognized by the F-box protein β-TRCP, whereas the other domain is composed of ovalicin. We show that MetAP-2 can be tethered to SCFβ-TRCP, ubiquitinated, and degraded in a Protac-1-dependent manner. In the future, this approach may be useful for conditional inactivation of proteins, and for targeting disease-causing proteins for destruction.
Resumo:
The infected cell protein 0 (ICP0) of herpes simplex virus 1, a promiscuous transactivator shown to enhance the expression of genes introduced into cells by infection or transfection, interacts with numerous cellular proteins and has been linked to the disruption of ND10 and degradation of several proteins. ICP0 contains a RING finger domain characteristic of a class of E3 ubiquitin ligases. We report that: (i) in infected cells, ICP0 interacts dynamically with proteasomes and is bound to proteasomes in the presence of the proteasome inhibitor MG132. Also in infected cells, cdc34, a polyubiquitinated E2 ubiquitin-conjugating enzyme, exhibits increased ICP0-dependent dynamic interaction with proteasomes. (ii) In an in vitro substrate-independent ubiquitination system, the RING finger domain encoded by exon 2 of ICP0 binds cdc34, whereas the carboxyl-terminal domain of ICP0 functions as an E3 ligase independent of the RING finger domain. The results indicate that ICP0 can act as a unimolecular E3 ubiquitin ligase and that it promotes ubiquitin-protein ligation and binds the E2 cdc34. It differs from other unimolecular E3 ligases in that the domain containing the RING finger binds E2, whereas the ligase activity maps to a different domain of the protein. The results also suggest that ICP0 shuttles between nucleus and cytoplasm as a function of its dynamic interactions with proteasomes.
Resumo:
Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.
Resumo:
Palmitoyl-protein thioesterase is a lysosomal long-chain fatty acyl hydrolase that removes fatty acyl groups from modified cysteine residues in proteins. Mutations in palmitoyl-protein thioesterase were recently found to cause the neurodegenerative disorder infantile neuronal ceroid lipofuscinosis, a disease characterized by accumulation of amorphous granular deposits in cortical neurons, leading to blindness, seizures, and brain death by the age of three. In the current study, we demonstrate that [35S]cysteine-labeled lipid thioesters accumulate in immortalized lymphoblasts of patients with infantile neuronal ceroid lipofuscinosis. The accumulation in cultured cells is reversed by the addition of recombinant palmitoyl-protein thioesterase that is competent for lysosomal uptake through the mannose-6-phosphate receptor. The [35S]cysteine-labeled lipids are substrates for palmitoyl-protein thioesterase in vitro, and their formation requires prior protein synthesis. These data support a role for palmitoyl-protein thioesterase in the lysosomal degradation of S-acylated proteins and define a major new pathway for the catabolism of acylated proteins in the lysosome.
Resumo:
Many bacteria use acyl homoserine lactone signals to monitor cell density in a type of gene regulation termed quorum sensing and response. Synthesis of these signals is directed by homologs of the luxi gene of Vibrio fischeri. This communication resolves two critical issues concerning the synthesis of the V. fischeri signal. (i) The luxI product is directly involved in signal synthesis-the protein is an acyl homoserine lactone synthase; and (ii) the substrates for acyl homoserine lactone synthesis are not amino acids from biosynthetic pathways or fatty acid degradation products, but rather they are S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway. We purified a maltose binding protein-LuxI fusion polypeptide and showed that, when provided with the appropriate substrates, it catalyzes the synthesis of an acyl homoserine lactone. In V. fischeri, luxi directs the synthesis of N-(3-oxohexanoyl) homoserine lactone and hexanoyl homoserine lactone. The purified maltose binding protein-LuxI fusion protein catalyzes the synthesis of hexanoyl homoserine lactone from hexanoyl-ACP and SAM. There is a high level of specificity for hexanoyl-ACP over ACPs with differing acyl group lengths, and hexanoyl homoserine lactone was not synthesized when SAM was replaced with other amino acids, such as methionine, S-adenosylhomocysteine, homoserine, or homoserine lactone, or when hexanoyl-SAM was provided as the substrate. This provides direct evidence that the LuxI protein is an auto-inducer synthase that catalyzes the formation of an amide bond between SAM and a fatty acyl-ACP and then catalyzes the formation of the acyl homoserine lactone from the acyl-SAM intermediate.
Resumo:
Pseudohyphal differentiation in Saccharomyces cerevisiae was first described as a response of diploid cells to nitrogen limitation. Here we report that haploid and diploid starch-degrading S. cerevisiae strains were able to switch from a yeast form to a filamentous pseudohyphal form in response to carbon limitation in the presence of an ample supply of nitrogen. Two genes, MSS10 and MUC1, were cloned and shown to be involved in pseudohyphal differentiation and invasive growth. The deletion of MSS10 resulted in extremely reduced amounts of pseudohyphal differentiation and invasive growth, whereas the deletion of MUC1 abolished pseudohyphal differentiation and invasive growth completely. Mss10 appears to be a transcriptional activator that responds to nutrient limitation and coregulates the expression of MUC1 and the STA1-3 glucoamylase genes, which are involved in starch degradation. MUC1 encodes a 1367-amino acid protein, containing several serine/threonine-rich repeats. Muc1 is a putative integral membrane-bound protein, similar to mammalian mucin-like membrane proteins that have been implicated to play a role in the ability of cancer cells to invade other tissues.
Resumo:
Many genes involved in cell division and DNA replication and their protein products have been identified in bacteria; however, little is known about the cell cycle regulation of the intracellular concentration of these proteins. It has been shown that the level of the tubulin-like GTPase FtsZ is critical for the initiation of cell division in bacteria. We show that the concentration of FtsZ varies dramatically during the cell cycle of Caulobacter crescentus. Caulobacter produce two different cell types at each cell division: (i) a sessile stalked cell that can initiate DNA replication immediately after cell division and (ii) a motile swarmer cell in which DNA replication is blocked. After cell division, only the stalked cell contains FtsZ. FtsZ is synthesized slightly before the swarmer cells differentiate into stalked cells and the intracellular concentration of FtsZ is maximal at the beginning of cell division. Late in the cell cycle, after the completion of chromosome replication, the level of FtsZ decreases dramatically. This decrease is probably mostly due to the degradation of FtsZ in the swarmer compartment of the predivisional cell. Thus, the variation of FtsZ concentration parallels the pattern of DNA synthesis. Constitutive expression of FtsZ leads to defects in stalk biosynthesis suggesting a role for FtsZ in this developmental process in addition to its role in cell division.
Resumo:
Binding studies were conducted to identify the anatomical location of brain target sites for OB protein, the ob gene product. 125I-labeled recombinant mouse OB protein or alkaline phosphatase-OB fusion proteins were used for in vitro and in vivo binding studies. Coronal brain sections or fresh tissue from lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats were probed to identify potential central OB protein-binding sites. We report here that recombinant OB protein binds specifically to the choroid plexus. The binding of OB protein (either radiolabeled or the alkaline phosphatase-OB fusion protein) and its displacement by unlabeled OB protein was similar in lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats. These findings suggest that OB protein binds with high affinity to a specific receptor in the choroid plexus. After binding to the choroid plexus receptor, OB protein may then be transported across the blood-brain barrier into the cerebrospinal fluid. Alternatively, binding of OB protein to a specific receptor in the choroid plexus may activate afferent neural inputs to the neural network that regulates feeding behavior and energy balance or may result in the clearance or degradation of OB protein. The identification of the choroid plexus as a brain binding site for OB protein will provide the basis for the construction of expression libraries and facilitate the rapid cloning of the choroid plexus OB receptor.