929 resultados para Propagation and acclimatization
Resumo:
Propagation of nuclear data uncertainties in reactor calculations is interesting for design purposes and libraries evaluation. Previous versions of the GRS XSUSA library propagated only neutron cross section uncertainties. We have extended XSUSA uncertainty assessment capabilities by including propagation of fission yields and decay data uncertainties due to the their relevance in depletion simulations. We apply this extended methodology to the UAM6 PWR Pin-Cell Burnup Benchmark, which involves uncertainty propagation through burnup.
Resumo:
Propagation of nuclear data uncertainties to calculated values is interesting for design purposes and libraries evaluation. XSUSA, developed at GRS, propagates cross section uncertainties to nuclear calculations. In depletion simulations, fission yields and decay data are also involved and suppose a possible source of uncertainty that must be taken into account. We have developed tools to generate varied fission yields and decay libraries and to propagate uncertainties trough depletion in order to complete the XSUSA uncertainty assessment capabilities. A simple test to probe the methodology is defined and discussed.
Resumo:
The work presented in this article is focused on the RF measurement campaign carried out in several subway tunnels in Metro Madrid (Spain). Most common segments such as straight lines, curves and passing through station as well as other unique scenarios in metropolitan lines were the selected locations during this campaign. Measurements were conducted in tunnels of diverse cross section shapes and taken at three frequency bands: 900 MHz, 2.4GHz and 5.7 GHz for both horizontal and vertical polarization.
Resumo:
El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.
Resumo:
This paper proposes an extension of methods used to predict the propagation of landslides having a long runout to smaller landslides with much shorter propagation distances. The method is based on: (1) a depth-integrated mathematical model including the coupling between the soil skeleton and the pore fluids, (2) suitable rheological models describing the relation between the stress and the rate of deformation tensors for fluidised soils and (3) a meshless numerical method, Smooth Particle Hydrodynamics, which separates the computational mesh (or set of computational nodes) from the mesh describing the terrain topography, which is of structured type – thus accelerating search operations. The proposed model is validated using two examples for which there are analytical solutions, and then it is applied to two short runout landslides which happened in Hong Kong in 1995, for which there is available information.
Resumo:
There is a well-distinguished group of asteroids for which the roto-translational cou-pling is known to have a non-negligible e�ect in the long-term. The study of such asteroids suggests the use of specialized propagation techniques, where perturbation methods make their best. The techniques from which the special regularization method DROMO is derived, have now been extended to the attitude dynamics, with equally remarkable results in terms of speed and accuracy, thus making the combination of these algorithms specially. well-suited to deal with the propagation of bodies with strong attitude coupling.
Resumo:
This paper presents an overview of depth averaged modelling of fast catastrophic landslides where coupling of solid skeleton and pore fluid (air and water) is important. The first goal is to show how Biot-Zienkiewicz models can be applied to develop depth integrated, coupled models. The second objective of the paper is to consider a link which can be established between rheological and constitutive models. Perzyna´s viscoplasticity can be considered a general framework within which rheological models such as Bingham and cohesive frictional fluids can be derived. Among the several alternative numerical models, we will focus here on SPH which has not been widely applied by engineers to model landslide propagation. We propose an improvement, based on combining Finite Difference meshes associated to SPH nodes to describe pore pressure evolution inside the landslide mass. We devote a Section to analyze the performance of the models, considering three sets of tests and examples which allows to assess the model performance and limitations: (i) Problems having an analytical solution, (ii) Small scale laboratory tests, and (iii) Real cases for which we have had access to reliable information
Resumo:
The genetic properties of the non-Mendelian element, [URE3], suggest that it is a prion (infectious protein) form of Ure2p, a mediator of nitrogen regulation in Saccharomyces cerevisiae. Into a ure2Δ strain (necessarily lacking [URE3]), we introduced a plasmid overproducing Ure2p. This induced the frequent “spontaneous generation” of [URE3], with properties identical to the original [URE3]. Altering the translational frame only in the prion-inducing domain of URE2 shows that it is Ure2 protein (and not URE2 RNA) that induces appearance of [URE3]. The proteinase K-resistance of Ure2p is unique to [URE3] strains and is not seen in nitrogen regulation of normal strains. The prion-inducing domain of Ure2p (residues 1–65) can propagate [URE3] in the absence of the C-terminal part of the molecule. In contrast, the C-terminal part of Ure2p cannot be converted to the prion (inactive) form without the prion-inducing domain covalently attached. These experiments support the prion model for [URE3] and extend our understanding of its propagation.
Resumo:
To gain entry into cells, viruses utilize a variety of different cell-surface molecules. Foot-and-mouth disease virus (FMDV) binds to cell-surface integrin molecules via an arginine-glycine-aspartic acid (RGD) sequence in capsid protein VP1. Binding to this particular cell-surface molecule influences FMDV tropism, and virus/receptor interactions appear to be responsible, in part, for selection of antigenic variants. To study early events of virus-cell interaction, we engineered an alternative and novel receptor for FMDV. Specifically, we generated a new receptor by fusing a virus-binding, single-chain antibody (scAb) to intracellular adhesion molecule 1 (ICAM1). Cells that are normally not susceptible to FMDV infection became susceptible after being transfected with DNA encoding the scAb/ICAM1 protein. An escape mutant (B2PD.3), derived with the mAb used to generate the genetically engineered receptor, was restricted for growth on the scAb/ICAM1 cells, but a variant of B2PD.3 selected by propagation on scAb/ICAM1 cells grew well on these cells. This variant partially regained wild-type sequence in the epitope recognized by the mAb and also regained the ability to be neutralize by the mAb. Moreover, RGD-deleted virions that are noninfectious in animals and other cell types grew to high titers and were able to form plaques on scAb/ ICAM1 cells. These studies demonstrate the first production of a totally synthetic cell-surface receptor for a virus. This novel approach will be useful for studying virus reception and for the development of safer vaccines against viral pathogens of animals and humans.
Resumo:
Póster presentado en SPIE Photonics Europe, Brussels, 16-19 April 2012.
Resumo:
Advertisments on last page.
Resumo:
Includes index.